
First Order Transient Response

When non-linear elements such as inductors and capacitors are introduced into a circuit, the 

behaviour is not instantaneous as it would be with resistors. A change of state will disrupt the 

circuit and the non-linear elements require time to respond to the change. Some responses 

can cause jumps in the voltage and current which may be damaging to the circuit. Accounting 

for the transient response with circuit design can prevent circuits from acting in an undesirable 

fashion. 

This section introduces the transient response of first order circuits. It explores the complete 

response of inductors and capacitors to a state change, including the forced and natural 

response, and briefly describes a method to solve separable differential equations. The circuits

are exposed to constant and exponential voltage or current sources. 

First Order Constant Input Circuits

In the case of inductors and capacitors, a circuit can be modeled with differential equations. 

The order of the differential equations will be equal to the number of capacitors plus the 

number of inductors. Therefore, we consider a first order circuit to be one containing only 



one inductor or capacitor. 

To understand the response of a circuit, we can simplify all elements down to their Norton or

Thévenin equivalent circuit for a simpler calculation. If the circuit contains a capacitor, we 

find the Thévenin equivalent circuit, conversely we find the Norton equivalent if there is an 

inductor present. If multiple capacitors or inductors are present and these can be combined 

into an equivalent inductor/capacitor, then we can analyse that circuit as well. 

Steady State Response

Consider the circuit in figure 1, shown below.

Figure 1: RC circuit

Before t=0, the circuit is at a steady state. A voltage is applied from the voltage source 

and the circuit is at a steady state. The response or output of the circuit is the voltage 

across the capacitor. We know that before the switch is opened, the response of the 

circuit will be a constant V0. The current will be zero because the voltage is not changing 

(current through a capacitor is dependant on the derivative of the voltage).

A long time after the switch is opened and the capacitor has discharged, the system will 

again reach a steady state. The voltage remains constant at zero, and the current is also 

zero because of the constant voltage across the capacitor. However, immediately after 

the switch is opened, the circuit enters the transient state because it has been disturbed.

It takes time to return to a steady state. The complete response is both the transient 

response and the steady state response. 



Complete Response = Transient Response + Steady-State Response

Sinusoidal steady states require that the response has the same frequency of the input 

and is also sinusoidal. Figure 2 demonstrates a sinusoidal circuit entering the transient 

state at t=0 then reaching steady state after about 7 seconds. 

Figure 2: Complete response of an AC circuit

In some contexts, the term transient response may refer to the complete response, or the

transient response as discussed here. Be careful when using this term. 

Natural and Forced Response

The complete response of a circuit can be represented as the sum of the natural 
response and the forced response. In a first order circuit, the natural response will be 
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the general solution to the differential equation when the input to the circuit is set to 0.

natural response

... Eq. (1) 

Here, t0 is the time the change started, tau  is the time constant which determines how 

quickly the voltage approaches its final value, and A is a constant which affects the 

amplification of the natural response. 

The form of the forced response depends on the input of the circuit. There are 3 cases to

consider: the input is a constant, an exponential or a sinusoid. In each, the forced 

response will have the same form as the input, for example if the input is a sinusoid, the 

forced response will be a sinusoid with the same frequency. If the input is a constant or 

exponential, the forced response will also be of that form. The forced response is the 

steady state response and the natural response is the transient response. 

To find the complete response of a circuit, 

Find the initial conditions by examining the steady state before the disturbance at t0.

Calculate the forced response after the disturbance.

Add the natural response of the disturbance to the forced response to obtain the 

complete response.

There are four cases to consider for first order circuits: A capacitor connected to a 

Thévenin or Norton circuit, and an inductor connected to a Thevenin or Norton equivalent

circuit. 

Capacitor and Thévenin Equivalent Circuit

A circuit containing one capacitor has been reduced down to its Thévenin equivalent 

where the load is the capacitor. We will find the voltage and current across the 

capacitor.



Figure 3: Capacitor and Thevenin circuit

Using a loop, the sum of the voltage will be zero. 

... Eq. (2)

Substitute in the capacitor current.

... Eq. (3)

which simplifies into the differential equation,

... Eq. (4)

Move the second term to the right hand side and then divide by the numerator.

... Eq. (5)

The indefinite integral resolves to the following form.

... Eq. (6)

D is a constant of integration. Removing the natural log and solving for v(t) shows



... Eq. (7)

The constant eD, represented by A, can be found at time t = 0. 

... Eq. (8)

We can also solve for the final steady state.

... Eq. (9)

Substitute eq. (9) and (8) into eq. (7). 

... Eq. (10)

Set the time constant from the product in the exponential term.

... Eq. (11)

Therefore, the final form of the complete reponse is

... Eq. (12)

Notice the form of the solution: the forced response (the system at its final steady 

state, eq. (9)) plus the natural response. 

Capacitor and Norton Equivalent Circuit

Figure 4 displays a capacitor connected to a Norton equivalent circuit. 



Figure 4: Capacitor with a Norton equivalent circuit

Nodal analysis of the top node reveals the following equation.

... Eq. (13)

Substitute the capacitor current.

... Eq. (14)

Rearrange into the following form.

...r Eq. (15)

This is in the same form as eq. (5). The proof will follow the same steps from eq. (6) to

eq. (10), once again resolving to the following form. 

... Eq. (16)

... Eq. (17)

Inductor and Thévenin Equivalent Circuit



Below is an inductor connected to a circuit which has been reduced to its Thévenin 

equivalent. 

Figure 5: Inductor and Thévenin equivalent circuit

Apply KVL to the loop of this circuit. 

... Eq. (18)

The voltage across an inductor is given by

... Eq. (19)

Use this in eq. (18).

... Eq. (20)

Rearrange the equation into a form that is easier to integrate.

... Eq. (21)



Divide by the term in brackets, and integrate.

... Eq. (22)

The integral becomes,

... Eq. (23)

Remove the natural log and solve for the inductor current.

... Eq. (24)

At time t = 0, the constant eD = A is revealed. 

... Eq. (25)

As the time goes to infinity, the steady state or forced response is found.

... Eq. (26) 

The time constant tau  is,

... Eq. (27)

Therefore the complete response of the current through an inductor connected to a 

thevenin equivalent circuit is



... Eq. (28)

Notice the similarities of this form to that of the capacitors? 

Inductor and Norton Equivalent Circuit

Consider the circuit shown in the following figure.

Figure 6: Inductor with Norton equivalent circuit

Nodal analysis of the top node resolves to the following equation. 

... Eq. (29)

Use the inductor voltage from eq. (19).

... Eq. (30)

Remove the constants from the derivative. 

... Eq. (31)



Separating the constants from the current gets this into a form that is easier to 

integrate. 

... Eq. (32)

... Eq. (33)

This follows the same proof as eq. (22) to (26). The time constant is therefore,

... Eq. (34)

The complete response is

... Eq. (35)

Example: Complete Response with Constant Input

Let's find the differential equation for a circuit with a constant input after time t0. Consider

the circuit with one capacitor and no inductors in figure 1, shown again here. 

Figure 1: RC circuit with constant input



The first step is to find the initial condition for the voltage at t0=0. As the circuit is in series

and the capacitor will act as an open connection at a steady state, the voltage will be V0 

at t=0. 

once again, there will be no potential across the element. The forced response = 0. 

The current through a capacitor is dependant on the rate of change of the voltage, and 

the resistor current can be found with ohm's law. 

Rearrange this differential equation into a form that is easier to solve.

Take the definite integral from t0 = 0 to t for each side respectively. Use substitution on 

the left hand side.

Evaluating the integral and solving for the voltage response reveals 

       for       

Therefore, the complete response will be the sum of the natural response and the forced 



response ( ).

The current across the capacitor will be,

Complete Response 

The four cases demonstrated above all resolve to the same solution. A general form of 

the complete response should be found.

Proof of the Complete Response

To start, let x(t) represent the parameter of interest, which was voltage v(t) with 

capacitors and current i(t) with inductors in the previous examples above. The 

differential equations look similar, so starting from the differential equation from eq. 

(4),

... Eq. (4)

Recall the time constant tau  was the product RTh . Substitute this in as well as v(t) 

= x(t) and a constant K, which represents the constant on the right-hand side of the 

differential equation.

... Eq. (36)

Each differential equation can be written in this form. This allows a fast way to obtain 



the time constant. Let's proceed to solve it. 

... Eq. (37)

Factor out -1 and divide the numerator on the right hand side.

... Eq. (38)

Integrate the differential equation.

... Eq. (39)

The integral becomes

... Eq. (40)

Remove the natural log and let A = eD.

... Eq. (41)

This maps a solution from the differential equation to the complete response. The 

constants are also represented by the steady state response. 

... Eq. (42)

... Eq. (43)

In general, first order RL and RC circuits have a response following the form,



... eq. (44)

with the time constant tau , the initial value A and final value B. 

Adjust the sliders below and observe the effect on the complete response of the circuit. 

The slider for the parameter A B is the 

 is the time constant. 

A = 0

B = 20

Time constant  =
11

Table 1: Complete response interactive chart

Sequential Switching

Some circuits have multiple stages at which they change states. Sequential switching 

occurs in a circuit which changes states two or more times at different moments. Solving 

these circuits require the same methods previously described. The consecutive switches 

have initial conditions which can be found using the response of the first switch at that 

time instance. 



Example: Sequential switching

Consider the circuit shown below. 

Figure 7: Inductor circuit with two state changes

There are two switches which execute at different instances. To begin, let's find the 

initial conditions prior to both switches. 

Figure 8: Circuit before t=0

The inductor at a steady state will act as a short circuit, therefore it will have ten amps

flowing through it up to immediately before the switch. After the switch, the inductor 

behaves as such and the circuit looks like this:



Figure 9: Circuit after t=0 and before second switch

The current source no longer supplies any power, so the inductor will discharge. We 

know the initial state, and the final state has no current because the inductor will 

discharge. Use eq. (35) to find the natural response.

The time constant is,

 ms

Assume t is measured in milliseconds. Therefore before the second switch, the circuit 

has the response,

Using this response, the circuit right before the second switch at t=1 ms, the current 

will be

 = 

3.68 amps. The circuit changes state at t=1 ms.



Figure 10: Circuit after t=1 ms. 

The second switch adds an additional resistor. The equivalent resistance is, 

An equivalent resistance of 1 ohm. We know the initial condition before the switch. 

Again, in its final steady state there is no current. The time current will change.

 ms

The complete response of the circuit therefore becomes,

Exponential Sources

The previous examples described the response to a constant source. What will be the 

response if a capacitor or inductor is connected to an exponential source? 

The general differential equation describing the response of a circuit is



 

... Eq. (45)

Where a is 1/ . Prior to now, y(t) was considered a constant, K. Now that the differential 

equation is not separable, we must use a different method. Consider the derivate which 

expands with product rule shown below. 

... Eq. (46)

If we multiply eq. (45) by the exponent eat and integrate, the left hand side will resolve to 

x$eat. 

... Eq. (47)

The derivative and integral cancel each other out on the left hand side. Remove the 

exponent from the left side, and add a constant of integration, K.

... Eq. (48)

Notice that the natural response is still of the form K$eat. Assume that if y(t) is 

exponential, it is of the form ebt. We can now evaluate the integral.

... Eq. (49)

The integral evaluates to 

... Eq. (50)

Simplify the exponential terms to obtain the general form.



... Eq. (51)

We must assume the sum of a and b is not equal to zero. 

Example: Exponential Source

The current source in this circuit turns on at t=0 and generates a current at an 

exponential rate. 

Figure 11: LR circuit with an exponential source

The first step is to obtain the initial values. The circuit will be in a steady state prior to 

t=0, and the exponential current source will be off and act as an open circuit. 

Figure 12: Circuit before t=0

The 4 ohm resistor can be omitted due to the short circuit at the inductor. The current 

across the inductor is found with ohm's law. 



We now have the initial conditions. The circuit after the switch opens becomes

Figure 13: Circuit after t=0

The natural response is easily found with the circuit in this form, using eq. (34) and 

(35).

We can expect the forcing function to be of the same form as the current source after 

the switch opens. 

Using KCL at the top node, find the differential equation.

Substitute the assumed forced current. 



Remove the exponential terms. The equation resolve to find B = 5. The complete 

response for t > 0 is

Using the initial condition , the coefficient A is found to be A = -3. Therefore,

the complete response is

 

This response is displayed below.

Figure 14: Complete response of LR circuit with exponential source.



Examples with MapleSim

Example 1: Complete Response with Constant Sources

Problem Statement: Find the complete response in the following circuit.

Figure 15: Constant sources with a capacitor

Analytical Solution

Data:



Solution:

First, we must find the initial conditions of the circuit. Calculate the Thevenin 

equivalent circuit in a steady state before t = 5. Find the equivalent voltage by making 

an open circuit at the load (at the capacitor).

Figure 16: Thevenin open circuit

Current i1 will be the same as the voltage source, Is. The third loop current i3 has an 

open segment and therefore zero current. The final loop finds the current of i2.

 = 

Because there is no current at i3, there is no voltage drop at the 3 ohm resistor and 

therefore the voltage is equal on both sides. 

 = 7
2



Optional: Find the equivalent resistance by making the current source an open circuit 

and the voltage source a short circuit.

Figure 17: Thevenin resistance

 = 4

Now that we know the initial conditions, find the final steady state circuit. This will be 

used to find the forced response. 

Figure 18: Forced response state



The elements within the red box are omitted due to the short circuit. Therefore by 

analysis, at a steady state the current and the voltage will be zero. 

Now we can find the natural response of the system. Do KVL around the loop after 

the switch closed.

Substitute the current of a capacitor.

Rearranging the differential equations forms the general complete response. Obtain 

the time constant and K value.

Plug these into the compete response from eq. (41). 

Of course, this had assumed t0 = 0. Accounting for the time shift, the complete 

response of the voltage becomes



The capacitor current is found by deriving the voltage.

Therefore, the current is

The figures below display the response of the system.

Figure 19: Voltage Response



Figure 20: Current Response

MapleSim Solution

Step 1: Insert Components

Drag the following components into a new workspace.

Component Location

Electrical > Analog 
> Common



Electrical > Analog 
> Common

(4 Required)

Electrical > Analog 
> Common

Electrical > Analog 
> Sources > Voltage

Electrical > Analog 

> Sources > Current

Electrical > Analog 
> Switches

Signal Blocks > 
Sources > Boolean

Step 2: Connect the components.

Connect the components as shown in the diagram below. 



Figure 21: MapleSim Model Diagram

Step 3: Set up parameters

1. Select the Constant Current block. On the 'Inspector' tab, set the current I 

parameter to 4.

2. Select the Constant Voltage block. Set the voltage to 3 volts. 

3. For each resistor, set the appropriate value as specified in the model diagram and 

problem statement. The resistor values should be 1 for the top-left, 1 for the bottom 

left, 2 for the middle and 3 for the top-right resistor. 

4. Select the Boolean Step block and set the step start time to 5 seconds.

5. Select the Capacitor block and set the capacitance C to 0.3 farads. 

Step 4: Connect probes

1. Connect a probe  to the line between the resistor and the capacitor. On the 

'Inspector' tab, make sure both boxes are checked to measure the voltage v, and 

current, i.

Step 5: Run Simulation

Run the simulation to observe the complete response of the capacitor. 



Results

The following plots are generated upon running the simulation.

Figure 21: MapleSim simulation results
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