Application Center - Maplesoft

App Preview:

Flow Through an Expansion Valve

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application




Flow Through an Expansion Valve

Introduction

Refrigerant R717

• 

enters an expansion valve (of cross-sectional area 0.011 m2) at 11 bar, 330 K and 25 m s-1,

• 

and leaves at 2 bar.

This application calculates the temperature and velocity of the refrigerant as it exits the valve.

 

The First Law of Thermodynamics states

`#mscripts(mi("Q",fontstyle = "normal"),mi("sys",fontstyle = "normal"),none(),none(),mo("."),none(),none())` = `#mscripts(mi("E",fontstyle = "normal"),mi("sys",fontstyle = "normal"),none(),none(),mo("."),none(),none())`+`#mscripts(mi("W",fontstyle = "normal"),mi("s",fontstyle = "normal"),none(),none(),mo("."),none(),none())`+`#mscripts(mi("m",fontstyle = "normal"),mi("out",fontstyle = "normal"),none(),none(),mo("."),none(),none())`*(h__out+(1/2)*v__out^2+g*z__out)-`#mscripts(mi("m",fontstyle = "normal"),mo("in"),none(),none(),mo("."),none(),none())`h__in+(1/2)*v__in^2+g*z__in

where

• 

`#mscripts(mi("Q",fontstyle = "normal"),mi("sys",fontstyle = "normal"),none(),none(),mo("."),none(),none())` is the heat generated by the system

• 

`#mscripts(mi("E",fontstyle = "normal"),mi("sys",fontstyle = "normal"),none(),none(),mo("."),none(),none())`is the rate of change of stored energy within the system

• 

W__s is the rate of work done by the system (except flow work)

• 

`#mscripts(mi("m",fontstyle = "normal"),mo("in"),none(),none(),mo("."),none(),none())` and `#mscripts(mi("m",fontstyle = "normal"),mi("out",fontstyle = "normal"),none(),none(),mo("."),none(),none())`are the mass flowrates into and out of the system

• 

h__in and h__out are the specific enthalpies of the fluid entering and leaving the system

• 

v__in and v__out are the velocities of the fluid entering and leaving the system

• 

z__in and z__out are the elevations of the fluid entering and leaving the system

 

For steady-state flow through an adiabatic expansion valve and no heat or work effects, the First Law of Thermodynamics reduces to

h__in+(1/2)*v__in^2=h__out+(1/2)*v__out^2

Assuming the input conditions are known, mass conversation implies that "(m)[in] =(m)[out] = m, "and hence

m = A*v__out*`ρ__out`

where A is the cross-section area of the valve and `ρ__out` is the fluid density at the exit.

 

The kinetic energy term in the First Law of Thermodynamics is generally small and is normally be ignored - this makes the combined system of equations explicit, and simple to solve. For this analysis, however, the kinetic energy term will remain. The equations are then implicit, and hence require a numerical solution

 

restart; with(ThermophysicalData)

Parameters

Entrance

fluid := "R717":

Enthalpy at inlet

h__in := Property(massspecificenthalpy, T = T__in, P = P__in, R717)

1655590.94731116970

(2.1.1)

Density at inlet

rho__in := ThermophysicalData:-Property(density, T = T__in, P = P__in, R717)

8.15132757401520891

(2.1.2)

Mass flowrate of refrigerant

m := A*v__in*rho__in

.4075663787

(2.1.3)

Exit

P__out := 2*10^5:

Enthalpy and density at outlet

eq1 := h__out = ThermophysicalData:-Property("massspecificenthalpy", "temperature" = T__out, "P" = P__out, fluid)

h__out = ThermophysicalData:-Property("massspecificenthalpy", "temperature" = T__out, "P" = 200000, "R717")

(2.2.1)

eq2 := rho__out = ThermophysicalData:-Property("D", "temperature" = T__out, "P" = P__out, fluid)

rho__out = ThermophysicalData:-Property("D", "temperature" = T__out, "P" = 200000, "R717")

(2.2.2)

Mass Conservation and First Law of Thermodynamics

eq3 := h__in+(1/2)*v__in^2 = h__out+(1/2)*v__out^2:

eq4 := m = A*v__out*rho__out:

Solution of the Equation System

res := fsolve({eq1, eq2, eq3, eq4})

{T__out = 285.0179004, h__out = 1654113.289, v__out = 55.27490598, rho__out = 1.474688637}

(4.1)

Plot Thermodynamic Process on a PhT Chart

assign(res); -1; p1 := plot(`~`[`*`](10^(-3), [[h__in, P__in], [h__out, P__out]]), color = black, thickness = 5); -1; p2 := plot(`~`[`*`](10^(-3), [[h__in, P__in], [h__out, P__out]]), thickness = 5, style = point, symbol = solidcircle, color = red, symbolsize = 20); -1; p3 := PHTChart(fluid); -1; plots:-display(p1, p2, p3)

NULL