Maple Programming: New Applications
https://www.maplesoft.com/applications/category.aspx?cid=226
en-us2022 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemTue, 25 Jan 2022 02:21:13 GMTTue, 25 Jan 2022 02:21:13 GMTNew applications in the Maple Programming categoryhttps://www.maplesoft.com/images/Application_center_hp.jpgMaple Programming: New Applications
https://www.maplesoft.com/applications/category.aspx?cid=226
Bee-Cell Structure.mw
https://www.maplesoft.com/applications/view.aspx?SID=154603&ref=Feed
Nature, in general, affords many examples of economy of space and time for anyone who is curious enough to stop for a while and think.
Pythagoras (6th Century BC) was reported to have known the fact that the circle is the figure that has the greatest surface area among all plane figures having the same perimeter which is obviously an example of economy of space.
Heron (2d Century BC) deduced the fact that light after reflection follows the shortest path, hence an example of economy of space.
Fermat (1601-1665) was seeking a way to put the law of light refraction under a form similar to that given by Heron for the light reflection but this time he was looking for an economy of time rather than space.
Huygens (1629-1695), building on Fermat finding, considered the path of light not as a straight line but rather as a curve when passing through mediums where its velocity is variable from one point to an other. Hence economy of time.
Jean Bernoulli (1667-1748) he too was building on Huygens concept when he solved the problem of the brachystochron which is based on economy of time.
This is not to say that nature economy is concerned with only physical phenomena but examples taken from living creatures abound around us. To take one example that many researches have examined very carefully and in many details in the past is that of the honeycomb building in a bee hive.
It turns out, as we shall soon prove, that the bottom of any bee-cell has the form of a trihedron with 3 equal rhombi (rhombotrihedron) which, once added to the hexagonal right prism, will make the total surface area smaller resulting in economy on the precious wax that is secreted and used by worker bee in the construction of the entire cell.
Our plan in this article has a double purpose:
1- to prove the minimal surface we referred to above using a classical proof.
2- To start with no preconceived idea about the bee-cell then
A- to consider a trihedron having 90 degrees dihedral angle between all 3 planes.
B- To get an equation relating dihedral angle with the larger angle in a rhombus that, once
solved, gives exactly the dihedral angle of 120 degrees along with the larger angle in each
rhombus as 109.47122 degrees which are the exact data one can find at the bottom end of a
honey-cell.
This configuration which is that of a minimal surface of the cell is the only one that our
equation can give for all 3 planes to have in common these two angles . All others have
different dihedral and larger angles.
I believe that the neat and simple equation I arrived at is somehow original and so far I have no idea if anyone else has found it before me.<img src="https://www.maplesoft.com/view.aspx?si=154603/3b4238cc9e7aeb803a42872bde31a350.gif" alt="Bee-Cell Structure.mw" style="max-width: 25%;" align="left"/>Nature, in general, affords many examples of economy of space and time for anyone who is curious enough to stop for a while and think.
Pythagoras (6th Century BC) was reported to have known the fact that the circle is the figure that has the greatest surface area among all plane figures having the same perimeter which is obviously an example of economy of space.
Heron (2d Century BC) deduced the fact that light after reflection follows the shortest path, hence an example of economy of space.
Fermat (1601-1665) was seeking a way to put the law of light refraction under a form similar to that given by Heron for the light reflection but this time he was looking for an economy of time rather than space.
Huygens (1629-1695), building on Fermat finding, considered the path of light not as a straight line but rather as a curve when passing through mediums where its velocity is variable from one point to an other. Hence economy of time.
Jean Bernoulli (1667-1748) he too was building on Huygens concept when he solved the problem of the brachystochron which is based on economy of time.
This is not to say that nature economy is concerned with only physical phenomena but examples taken from living creatures abound around us. To take one example that many researches have examined very carefully and in many details in the past is that of the honeycomb building in a bee hive.
It turns out, as we shall soon prove, that the bottom of any bee-cell has the form of a trihedron with 3 equal rhombi (rhombotrihedron) which, once added to the hexagonal right prism, will make the total surface area smaller resulting in economy on the precious wax that is secreted and used by worker bee in the construction of the entire cell.
Our plan in this article has a double purpose:
1- to prove the minimal surface we referred to above using a classical proof.
2- To start with no preconceived idea about the bee-cell then
A- to consider a trihedron having 90 degrees dihedral angle between all 3 planes.
B- To get an equation relating dihedral angle with the larger angle in a rhombus that, once
solved, gives exactly the dihedral angle of 120 degrees along with the larger angle in each
rhombus as 109.47122 degrees which are the exact data one can find at the bottom end of a
honey-cell.
This configuration which is that of a minimal surface of the cell is the only one that our
equation can give for all 3 planes to have in common these two angles . All others have
different dihedral and larger angles.
I believe that the neat and simple equation I arrived at is somehow original and so far I have no idea if anyone else has found it before me.https://www.maplesoft.com/applications/view.aspx?SID=154603&ref=FeedThu, 13 Feb 2020 17:34:36 ZAhmed BaroudyAhmed BaroudyAtwood Machine
https://www.maplesoft.com/applications/view.aspx?SID=154598&ref=Feed
The following is a detailed study of the motion of an unconventional Atwood Machine where one mass is constrained to move along a fixed vertical axis.
The differences with the regular Atwood Machine are :
1- the tension T on the string on either side of the pulley though it is the same, however it is not constant in the present case because of the obliquity of the 2d part of the string.
2- the unique and constant acceleration (a) in the simple machine is replaced in here with two different and variable accelerations whose ratio is however constant.
3- In the simple machine the constant acceleration makes plotting and animation of the system a straightforward procedure according to
s = (1/2)*at^2.However in the modified Atwood machine that we present in here the accelerations being variable there is no way to get the displacement as a direct function of time. This seems to make plotting & animation an impossible task. However we were able to devise a trick to overcome this difficulty.<img src="https://www.maplesoft.com/view.aspx?si=154598/Modified_Atwood_Machine.jpg" alt="Atwood Machine" style="max-width: 25%;" align="left"/>The following is a detailed study of the motion of an unconventional Atwood Machine where one mass is constrained to move along a fixed vertical axis.
The differences with the regular Atwood Machine are :
1- the tension T on the string on either side of the pulley though it is the same, however it is not constant in the present case because of the obliquity of the 2d part of the string.
2- the unique and constant acceleration (a) in the simple machine is replaced in here with two different and variable accelerations whose ratio is however constant.
3- In the simple machine the constant acceleration makes plotting and animation of the system a straightforward procedure according to
s = (1/2)*at^2.However in the modified Atwood machine that we present in here the accelerations being variable there is no way to get the displacement as a direct function of time. This seems to make plotting & animation an impossible task. However we were able to devise a trick to overcome this difficulty.https://www.maplesoft.com/applications/view.aspx?SID=154598&ref=FeedSat, 25 Jan 2020 05:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyPassword Protection in Maple
https://www.maplesoft.com/applications/view.aspx?SID=154270&ref=Feed
In Maple, worksheets can be password protected so the users of your Maple application can benefit from the specialized routines you've created while the details remain hidden. This Tips and Techniques shows you how to protect your Maple content from editing and viewing, while still allowing others to execute the code within and obtain results.<img src="https://www.maplesoft.com/view.aspx?si=154270/password.PNG" alt="Password Protection in Maple" style="max-width: 25%;" align="left"/>In Maple, worksheets can be password protected so the users of your Maple application can benefit from the specialized routines you've created while the details remain hidden. This Tips and Techniques shows you how to protect your Maple content from editing and viewing, while still allowing others to execute the code within and obtain results.https://www.maplesoft.com/applications/view.aspx?SID=154270&ref=FeedTue, 13 Jun 2017 04:00:00 ZGraham JacksonGraham JacksonCombining Multiple Animations in Maple
https://www.maplesoft.com/applications/view.aspx?SID=154222&ref=Feed
In this document, we show to build up complex animations by showing different ways to combine existing animations. We illustrate this using three animations, however, the techniques are general and can be applied to any number of animations.
<BR><BR>
This application is also the subject of a post on MaplePrimes: <A HREF="http://www.mapleprimes.com/posts/207840-Combinations-Of-Multiple-Animations">Combinations of multiple animations</A><img src="https://www.maplesoft.com/view.aspx?si=154222/multipleAnimations.jpg" alt="Combining Multiple Animations in Maple" style="max-width: 25%;" align="left"/>In this document, we show to build up complex animations by showing different ways to combine existing animations. We illustrate this using three animations, however, the techniques are general and can be applied to any number of animations.
<BR><BR>
This application is also the subject of a post on MaplePrimes: <A HREF="http://www.mapleprimes.com/posts/207840-Combinations-Of-Multiple-Animations">Combinations of multiple animations</A>https://www.maplesoft.com/applications/view.aspx?SID=154222&ref=FeedTue, 07 Feb 2017 05:00:00 ZYury ZavarovskyYury ZavarovskyTransport Encoding/Decoding and Cryptographic Protection of Computer Storage
https://www.maplesoft.com/applications/view.aspx?SID=154088&ref=Feed
This worksheet contains two user-friendly useful applications for encrypting personal files. One is useful for encoding arbitrary binary information, such as, for example, *.exe files, encrypted messages, cryptographic keys and audio and image files, for transmission by electronic mail. The second application provides an easy mechanism for non-computer science specialists to protect confidential data stored on their computers.<img src="https://www.maplesoft.com/view.aspx?si=154088/cspr.jpg" alt="Transport Encoding/Decoding and Cryptographic Protection of Computer Storage" style="max-width: 25%;" align="left"/>This worksheet contains two user-friendly useful applications for encrypting personal files. One is useful for encoding arbitrary binary information, such as, for example, *.exe files, encrypted messages, cryptographic keys and audio and image files, for transmission by electronic mail. The second application provides an easy mechanism for non-computer science specialists to protect confidential data stored on their computers.https://www.maplesoft.com/applications/view.aspx?SID=154088&ref=FeedThu, 21 Apr 2016 04:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyStatically Indeterminate Structure
https://www.maplesoft.com/applications/view.aspx?SID=153940&ref=Feed
The application allows you to determine the constraint reactions, build diagrams of the normal forces N, shear forces Q and bending moments M for beams and frames with any number of sections and degree of static indefinability.
The application calculates the deformation (displacements) of the structure in millimeters and displays the displacements of nodes in the horizontal and vertical. It is also possible to calculate the displacement of any point of the structure.<img src="https://www.maplesoft.com/view.aspx?si=153940/391e24e981ea8d11454375def604a185.gif" alt="Statically Indeterminate Structure" style="max-width: 25%;" align="left"/>The application allows you to determine the constraint reactions, build diagrams of the normal forces N, shear forces Q and bending moments M for beams and frames with any number of sections and degree of static indefinability.
The application calculates the deformation (displacements) of the structure in millimeters and displays the displacements of nodes in the horizontal and vertical. It is also possible to calculate the displacement of any point of the structure.https://www.maplesoft.com/applications/view.aspx?SID=153940&ref=FeedWed, 09 Mar 2016 05:00:00 ZDr. Aleksey ShirkoDr. Aleksey ShirkoSending Emails from the Maple Command Line
https://www.maplesoft.com/applications/view.aspx?SID=153912&ref=Feed
You can send emails from the Maple command line via Mailgun (http://mailgun.com) a free email delivery service with an web-based API. The code in this application communicates with this API to send an email; you'll need to replace certain parts with details from your own Mailgun account.<img src="https://www.maplesoft.com/applications/images/app_image_blank_lg.jpg" alt="Sending Emails from the Maple Command Line" style="max-width: 25%;" align="left"/>You can send emails from the Maple command line via Mailgun (http://mailgun.com) a free email delivery service with an web-based API. The code in this application communicates with this API to send an email; you'll need to replace certain parts with details from your own Mailgun account.https://www.maplesoft.com/applications/view.aspx?SID=153912&ref=FeedFri, 30 Oct 2015 04:00:00 ZSamir KhanSamir KhanComputational Performance with evalhf and Compile: A Newton Fractal Case Study
https://www.maplesoft.com/applications/view.aspx?SID=153683&ref=Feed
<p>This Tips and Techniques article focuses on the relative performance of Maple's various modes for floating-point computations. The example used here is the computation of a particular Newton fractal, which is easily parallelizable. We compute an image representation for this fractal under several computational modes, using both serial and multithreaded computation schemes.</p>
<p>This article is a follow up to a previous Tips and Techniques, <a href="http://www.maplesoft.com/applications/view.aspx?SID=153645">evalhf, Compile, hfloat and all that</a>, which discusses functionality differences amongst Maple's the different floating-point computation modes available in Maple.</p><img src="https://www.maplesoft.com/view.aspx?si=153683/thumb.jpg" alt="Computational Performance with evalhf and Compile: A Newton Fractal Case Study" style="max-width: 25%;" align="left"/><p>This Tips and Techniques article focuses on the relative performance of Maple's various modes for floating-point computations. The example used here is the computation of a particular Newton fractal, which is easily parallelizable. We compute an image representation for this fractal under several computational modes, using both serial and multithreaded computation schemes.</p>
<p>This article is a follow up to a previous Tips and Techniques, <a href="http://www.maplesoft.com/applications/view.aspx?SID=153645">evalhf, Compile, hfloat and all that</a>, which discusses functionality differences amongst Maple's the different floating-point computation modes available in Maple.</p>https://www.maplesoft.com/applications/view.aspx?SID=153683&ref=FeedFri, 26 Sep 2014 04:00:00 ZDave LinderDave LinderGenerating random numbers efficiently
https://www.maplesoft.com/applications/view.aspx?SID=153662&ref=Feed
Generating (pseudo-)random values is a frequent task in simulations and other programs. For some situations, you want to generate some combinatorial or algebraic values, such as a list or a polynomial; in other situations, you need random numbers, from a distribution that is uniform or more complicated. In this article I'll talk about all of these situations.<img src="https://www.maplesoft.com/view.aspx?si=153662/thumb.jpg" alt="Generating random numbers efficiently" style="max-width: 25%;" align="left"/>Generating (pseudo-)random values is a frequent task in simulations and other programs. For some situations, you want to generate some combinatorial or algebraic values, such as a list or a polynomial; in other situations, you need random numbers, from a distribution that is uniform or more complicated. In this article I'll talk about all of these situations.https://www.maplesoft.com/applications/view.aspx?SID=153662&ref=FeedMon, 18 Aug 2014 04:00:00 ZDr. Erik PostmaDr. Erik Postmaevalhf, Compile, hfloat and all that
https://www.maplesoft.com/applications/view.aspx?SID=153645&ref=Feed
Users sometimes ask how to make their floating-point (numeric) computations perform faster in Maple. The answers often include references to special terms such as evalhf, the Compiler, and option hfloat. A difficulty for the non-expert lies in knowing which of these can be used, and when. This Tips and Techniques attempts to clear up some of the mystery of these terms, by discussion and functionality comparison.<img src="https://www.maplesoft.com/applications/images/app_image_blank_lg.jpg" alt="evalhf, Compile, hfloat and all that" style="max-width: 25%;" align="left"/>Users sometimes ask how to make their floating-point (numeric) computations perform faster in Maple. The answers often include references to special terms such as evalhf, the Compiler, and option hfloat. A difficulty for the non-expert lies in knowing which of these can be used, and when. This Tips and Techniques attempts to clear up some of the mystery of these terms, by discussion and functionality comparison.https://www.maplesoft.com/applications/view.aspx?SID=153645&ref=FeedTue, 22 Jul 2014 04:00:00 ZDave LinderDave LinderCustom Plot Sizing and Shading
https://www.maplesoft.com/applications/view.aspx?SID=153607&ref=Feed
Many Maple users, no matter what they are working on, make use of Maple’s plotting abilities, and so this Tips and Techniques highlights some small but useful new plotting features introduced in Maple 18. Maple 18 give you the ability to set the size of your plots, giving you more control over your document’s use of space, as well as the ability to set the colour gradients used in 3-D plots. In this Tips and Techniques, you will find a variety of example that show you how to take advantage of these new plot options.<img src="https://www.maplesoft.com/view.aspx?si=153607/thumb.jpg" alt="Custom Plot Sizing and Shading" style="max-width: 25%;" align="left"/>Many Maple users, no matter what they are working on, make use of Maple’s plotting abilities, and so this Tips and Techniques highlights some small but useful new plotting features introduced in Maple 18. Maple 18 give you the ability to set the size of your plots, giving you more control over your document’s use of space, as well as the ability to set the colour gradients used in 3-D plots. In this Tips and Techniques, you will find a variety of example that show you how to take advantage of these new plot options.https://www.maplesoft.com/applications/view.aspx?SID=153607&ref=FeedMon, 16 Jun 2014 04:00:00 ZDave LinderDave LinderHopalong Attractor
https://www.maplesoft.com/applications/view.aspx?SID=153557&ref=Feed
<p>Hopalong attractors are fractals, introduced by Barry Martin of Aston University in Birmingham, England. This application allows you to explore the Hopalong by varying the parameters, the number of iterations, the iterates' symbol size, and the background color choice. You can also change the starting values of each of the three orbits by dragging the cross symbols appearing in the plot. Full details on how this application was created using the Explore command with a user-defined module are included.</p><img src="https://www.maplesoft.com/view.aspx?si=153557/95fa944692de1fb724cb7e758e6c56e5.gif" alt="Hopalong Attractor" style="max-width: 25%;" align="left"/><p>Hopalong attractors are fractals, introduced by Barry Martin of Aston University in Birmingham, England. This application allows you to explore the Hopalong by varying the parameters, the number of iterations, the iterates' symbol size, and the background color choice. You can also change the starting values of each of the three orbits by dragging the cross symbols appearing in the plot. Full details on how this application was created using the Explore command with a user-defined module are included.</p>https://www.maplesoft.com/applications/view.aspx?SID=153557&ref=FeedMon, 28 Apr 2014 04:00:00 ZDave LinderDave LinderClassroom Tips and Techniques: The Explore Command in Maple 18
https://www.maplesoft.com/applications/view.aspx?SID=153552&ref=Feed
The Explore functionality, which provides an interactive experience with parameter-dependent plots and expressions, has been significantly enhanced in Maple 18. In this Tips and Techniques article, I will focus on some key usage points of using the Explore command with plots, including explorations based on simple Maple plots as well as user-defined plotting procedures.<img src="https://www.maplesoft.com/view.aspx?si=153552/thumb.jpg" alt="Classroom Tips and Techniques: The Explore Command in Maple 18" style="max-width: 25%;" align="left"/>The Explore functionality, which provides an interactive experience with parameter-dependent plots and expressions, has been significantly enhanced in Maple 18. In this Tips and Techniques article, I will focus on some key usage points of using the Explore command with plots, including explorations based on simple Maple plots as well as user-defined plotting procedures.https://www.maplesoft.com/applications/view.aspx?SID=153552&ref=FeedWed, 16 Apr 2014 04:00:00 ZDave LinderDave LinderGeneralized byte-oriented fast stream cipher that is resistant to reverse engineering
https://www.maplesoft.com/applications/view.aspx?SID=153499&ref=Feed
<p>A new numerous family of strong, to reverse engineering resistant, and fast byte-oriented stream-ciphers has been presented. One ought to unpack the file gbosc.zip, open the worksheet gbosc.mw in the Maple session, read it and test the application described.</p><img src="https://www.maplesoft.com/applications/images/app_image_blank_lg.jpg" alt="Generalized byte-oriented fast stream cipher that is resistant to reverse engineering" style="max-width: 25%;" align="left"/><p>A new numerous family of strong, to reverse engineering resistant, and fast byte-oriented stream-ciphers has been presented. One ought to unpack the file gbosc.zip, open the worksheet gbosc.mw in the Maple session, read it and test the application described.</p>https://www.maplesoft.com/applications/view.aspx?SID=153499&ref=FeedTue, 28 Jan 2014 05:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyClassroom Tips and Techniques: Slider-Control of Parameters in an ODE
https://www.maplesoft.com/applications/view.aspx?SID=152112&ref=Feed
Several ways to provide slider-control of parameters in a differential equation are considered. In particular, the cases of one and two parameters are illustrated, and for the case of two parameters, a 2-dimensional slider is constructed.<img src="https://www.maplesoft.com/view.aspx?si=152112/thumb.jpg" alt="Classroom Tips and Techniques: Slider-Control of Parameters in an ODE" style="max-width: 25%;" align="left"/>Several ways to provide slider-control of parameters in a differential equation are considered. In particular, the cases of one and two parameters are illustrated, and for the case of two parameters, a 2-dimensional slider is constructed.https://www.maplesoft.com/applications/view.aspx?SID=152112&ref=FeedMon, 23 Sep 2013 04:00:00 ZDr. Robert LopezDr. Robert LopezHohmann Elliptic Transfer Orbit with Animation
https://www.maplesoft.com/applications/view.aspx?SID=151351&ref=Feed
<p>Abstract<br /><br />The main purpose of this article is to show how to use Hohmann elliptic transfer in two situations:<br />a- When one manned spaceship is trying to catch up with an other one <br />on the same circular orbit around Earth.<br />b- When delivering a payload from Earth to a space station on a circular <br />orbit around Earth using 2-stage rocket .<br /><br />The way we set up the problem is as follows:<br />Consider two manned spaceships with astronauts Sally & Igor , the latter<br />lagging behind Sally by a given angle = 4.5 degrees while both are on the same<br />circular orbit C2 about Earth. A 2d lower circular orbit C1 is given. <br />Find the Hohmann elliptic orbit that is tangent to both orbits which allows<br />Sally to maneuver on C1 then to get back to the circular orbit C2 alongside Igor.<br /><br />Though the math was correct , however the final result we found was not !! <br />It was somehow tricky to find the culprit!<br />We have to restate the problem to get the correct answer. <br />The animation was then set up using the correct data. <br />The animation is a good teaching help for two reasons:<br />1- it gives a 'hand on' experience for anyone who wants to fully understand it,<br />2- it is a good lesson in Maple programming with many loops of the type 'if..then'.<br /><br />Warning<br /><br />This particular animation is a hog for the CPU memory since data accumulated <br />for plotting reached 20 MB! This is the size of this article when animation is <br />executed. For this reason and to be able to upload it I left the animation <br />procedure non executed which drops the size of the article to 300KB.<br /><br />Conclusion<br /><br />If I can get someone interested in the subject of this article in such away that he or <br />she would seek further information for learning from other sources, my efforts<br />would be well rewarded.</p><img src="https://www.maplesoft.com/view.aspx?si=151351/24030360191a26b4d767de35f843bbd8.gif" alt="Hohmann Elliptic Transfer Orbit with Animation" style="max-width: 25%;" align="left"/><p>Abstract<br /><br />The main purpose of this article is to show how to use Hohmann elliptic transfer in two situations:<br />a- When one manned spaceship is trying to catch up with an other one <br />on the same circular orbit around Earth.<br />b- When delivering a payload from Earth to a space station on a circular <br />orbit around Earth using 2-stage rocket .<br /><br />The way we set up the problem is as follows:<br />Consider two manned spaceships with astronauts Sally & Igor , the latter<br />lagging behind Sally by a given angle = 4.5 degrees while both are on the same<br />circular orbit C2 about Earth. A 2d lower circular orbit C1 is given. <br />Find the Hohmann elliptic orbit that is tangent to both orbits which allows<br />Sally to maneuver on C1 then to get back to the circular orbit C2 alongside Igor.<br /><br />Though the math was correct , however the final result we found was not !! <br />It was somehow tricky to find the culprit!<br />We have to restate the problem to get the correct answer. <br />The animation was then set up using the correct data. <br />The animation is a good teaching help for two reasons:<br />1- it gives a 'hand on' experience for anyone who wants to fully understand it,<br />2- it is a good lesson in Maple programming with many loops of the type 'if..then'.<br /><br />Warning<br /><br />This particular animation is a hog for the CPU memory since data accumulated <br />for plotting reached 20 MB! This is the size of this article when animation is <br />executed. For this reason and to be able to upload it I left the animation <br />procedure non executed which drops the size of the article to 300KB.<br /><br />Conclusion<br /><br />If I can get someone interested in the subject of this article in such away that he or <br />she would seek further information for learning from other sources, my efforts<br />would be well rewarded.</p>https://www.maplesoft.com/applications/view.aspx?SID=151351&ref=FeedWed, 04 Sep 2013 04:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyMaple `Keyless` Base b Encryption Scheme
https://www.maplesoft.com/applications/view.aspx?SID=149026&ref=Feed
In this submission it will be shown that the convert/base built-in function can be used to create many new tools which can encrypt or decrypt any file selected. Such a tool, named Maple "keyless` base b encryption scheme, allows to determine the admissible number of elements of the set of ASCII decimals which will be present in the encrypted file, and to choose all the elements of this set.<img src="https://www.maplesoft.com/applications/images/app_image_blank_lg.jpg" alt="Maple `Keyless` Base b Encryption Scheme" style="max-width: 25%;" align="left"/>In this submission it will be shown that the convert/base built-in function can be used to create many new tools which can encrypt or decrypt any file selected. Such a tool, named Maple "keyless` base b encryption scheme, allows to determine the admissible number of elements of the set of ASCII decimals which will be present in the encrypted file, and to choose all the elements of this set.https://www.maplesoft.com/applications/view.aspx?SID=149026&ref=FeedMon, 01 Jul 2013 04:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyBase 64 "Keyless" File Encryption
https://www.maplesoft.com/applications/view.aspx?SID=145918&ref=Feed
Abstract: A "keyless" cipher not using complex mathematical formulas but applying non-linear transformations of base 64 encoding scheme has been described. The word "keyless" means that the encrypting/decrypting application itself fulfills the role of the secret key and should be carefully watched and stored. Presented tool is mainly suitable for cryptographic protection of e-mail enclosures.<BR>
<P>
Note: For proper functioning of this application, this application must be saved in a location with no spaces in the path name, e.g. C:\keyless.<img src="https://www.maplesoft.com/applications/images/app_image_blank_lg.jpg" alt="Base 64 "Keyless" File Encryption" style="max-width: 25%;" align="left"/>Abstract: A "keyless" cipher not using complex mathematical formulas but applying non-linear transformations of base 64 encoding scheme has been described. The word "keyless" means that the encrypting/decrypting application itself fulfills the role of the secret key and should be carefully watched and stored. Presented tool is mainly suitable for cryptographic protection of e-mail enclosures.<BR>
<P>
Note: For proper functioning of this application, this application must be saved in a location with no spaces in the path name, e.g. C:\keyless.https://www.maplesoft.com/applications/view.aspx?SID=145918&ref=FeedMon, 15 Apr 2013 04:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyGems 26-30 from the Red Book of Maple Magic
https://www.maplesoft.com/applications/view.aspx?SID=141091&ref=Feed
<p>In 2011, this column published five "Maple Magic" articles, each containing five "gems" gleaned from interactions with Maple and the Maplesoft programmers. Here are five more recent additions to the Red Book, every one of which contained something about Maple that was a surprise to me, experienced Maple user that I am.</p><img src="https://www.maplesoft.com/view.aspx?si=141091/thumb.jpg" alt="Gems 26-30 from the Red Book of Maple Magic" style="max-width: 25%;" align="left"/><p>In 2011, this column published five "Maple Magic" articles, each containing five "gems" gleaned from interactions with Maple and the Maplesoft programmers. Here are five more recent additions to the Red Book, every one of which contained something about Maple that was a surprise to me, experienced Maple user that I am.</p>https://www.maplesoft.com/applications/view.aspx?SID=141091&ref=FeedTue, 04 Dec 2012 05:00:00 ZDr. Robert LopezDr. Robert LopezObject-Oriented Programming in Maple 16
https://www.maplesoft.com/applications/view.aspx?SID=132199&ref=Feed
The Maple language is a full programming language designed for mathematical computation, combining the best principles from procedural, functional, and object-oriented programming. Maple 16 adds support for light-weight objects for enhanced object-oriented programming. Such objects integrate closely with Maple using operator overloading, making your objects almost indistinguishable from built-in Maple types. This example illustrates the use of light-weight objects.<img src="https://www.maplesoft.com/view.aspx?si=132199/thumb.jpg" alt="Object-Oriented Programming in Maple 16" style="max-width: 25%;" align="left"/>The Maple language is a full programming language designed for mathematical computation, combining the best principles from procedural, functional, and object-oriented programming. Maple 16 adds support for light-weight objects for enhanced object-oriented programming. Such objects integrate closely with Maple using operator overloading, making your objects almost indistinguishable from built-in Maple types. This example illustrates the use of light-weight objects.https://www.maplesoft.com/applications/view.aspx?SID=132199&ref=FeedTue, 27 Mar 2012 04:00:00 ZMaplesoftMaplesoft