Engineering: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=164
en-us2017 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemMon, 21 Aug 2017 11:58:40 GMTMon, 21 Aug 2017 11:58:40 GMTNew applications in the Engineering categoryhttp://www.mapleprimes.com/images/mapleapps.gifEngineering: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=164
Classroom Tips and Techniques: Eigenvalue Problems for ODEs
https://www.maplesoft.com/applications/view.aspx?SID=4971&ref=Feed
Some boundary value problems for partial differential equations are amenable to analytic techniques. For example, the constant-coefficient, second-order linear equations called the heat, wave, and potential equations are solved with some type of Fourier series representation obtained from the Sturm-Liouville eigenvalue problem that arises upon separating variables. The role of Maple in the solution of such boundary value problems is examined. Efficient techniques for separating variables, and a way to guide Maple through the solution of the resulting Sturm-Liouville eigenvalue problems are shown.<img src="/view.aspx?si=4971/R-23EigenvalueProblemsforODEs.jpg" alt="Classroom Tips and Techniques: Eigenvalue Problems for ODEs" align="left"/>Some boundary value problems for partial differential equations are amenable to analytic techniques. For example, the constant-coefficient, second-order linear equations called the heat, wave, and potential equations are solved with some type of Fourier series representation obtained from the Sturm-Liouville eigenvalue problem that arises upon separating variables. The role of Maple in the solution of such boundary value problems is examined. Efficient techniques for separating variables, and a way to guide Maple through the solution of the resulting Sturm-Liouville eigenvalue problems are shown.4971Mon, 14 Aug 2017 04:00:00 ZDr. Robert LopezDr. Robert LopezPlot of Position Vector
https://www.maplesoft.com/applications/view.aspx?SID=154290&ref=Feed
This app performs the trace of a given path r(t), then locates the position vector in a specific time. It also graphs the velocity vector, acceleration, tangential and normal unit vectors, along with the binormal. The numerical value of velocity, acceleration and curvature are also observed for a better analysis of the movement of particles in a curvilinear trajectory. Developed for our engineering students. In Spanish.<img src="/view.aspx?si=154290/bnrvp.png" alt="Plot of Position Vector" align="left"/>This app performs the trace of a given path r(t), then locates the position vector in a specific time. It also graphs the velocity vector, acceleration, tangential and normal unit vectors, along with the binormal. The numerical value of velocity, acceleration and curvature are also observed for a better analysis of the movement of particles in a curvilinear trajectory. Developed for our engineering students. In Spanish.154290Thu, 10 Aug 2017 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloClassroom Tips and Techniques: Green's Functions for Second-Order ODEs
https://www.maplesoft.com/applications/view.aspx?SID=4820&ref=Feed
<p>For second-order ODEs, we compute the Green's function for both initial and boundary value problems. For the boundary value problem, we consider mixed and unmixed boundary conditions, of both homogeneous and nonhomogeneous types. In every case, we compare our solutions to direct solutions using Maple's dsolve command.</p><img src="/view.aspx?si=4820/image.php.gif" alt="Classroom Tips and Techniques: Green's Functions for Second-Order ODEs" align="left"/><p>For second-order ODEs, we compute the Green's function for both initial and boundary value problems. For the boundary value problem, we consider mixed and unmixed boundary conditions, of both homogeneous and nonhomogeneous types. In every case, we compare our solutions to direct solutions using Maple's dsolve command.</p>4820Tue, 04 Jul 2017 04:00:00 ZDr. Robert LopezDr. Robert LopezMomentum with two variable force
https://www.maplesoft.com/applications/view.aspx?SID=154273&ref=Feed
This app shows the calculation of the final velocity of a body after it made contact with a variable force taking as reference the initial velocity, mass and the graph of the variation of F as a function of time. Made with native maple syntax (use of promt) and embedded components.
In Spanish.<img src="/view.aspx?si=154273/cmimp.png" alt="Momentum with two variable force" align="left"/>This app shows the calculation of the final velocity of a body after it made contact with a variable force taking as reference the initial velocity, mass and the graph of the variation of F as a function of time. Made with native maple syntax (use of promt) and embedded components.
In Spanish.154273Tue, 04 Jul 2017 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloKinematics using syntax
https://www.maplesoft.com/applications/view.aspx?SID=154271&ref=Feed
In this file you will be able to observe and analyze how the exercises and problems of Kinematics and Dynamics are solved using the commands and operators through a very well-structured syntax. Allowing me to save time and use it in interpretation. I hope you can share and spread to break the traditional and unnecessary myths. Only for Engineering and Science. Share if you like.
In Spanish.<img src="/view.aspx?si=154271/kinematicssint.png" alt="Kinematics using syntax" align="left"/>In this file you will be able to observe and analyze how the exercises and problems of Kinematics and Dynamics are solved using the commands and operators through a very well-structured syntax. Allowing me to save time and use it in interpretation. I hope you can share and spread to break the traditional and unnecessary myths. Only for Engineering and Science. Share if you like.
In Spanish.154271Wed, 14 Jun 2017 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloKinematics Curvilinear
https://www.maplesoft.com/applications/view.aspx?SID=154269&ref=Feed
With this application you can calculate the components of the acceleration. The scalar and vector components of the tangent and the normal. In addition to curvilinear kinetics in polar coordinates. It can be used in different engineers, especially mechanical, civil and more.
<BR><BR>
In Spanish.<img src="/view.aspx?si=154269/kc.png" alt="Kinematics Curvilinear" align="left"/>With this application you can calculate the components of the acceleration. The scalar and vector components of the tangent and the normal. In addition to curvilinear kinetics in polar coordinates. It can be used in different engineers, especially mechanical, civil and more.
<BR><BR>
In Spanish.154269Sat, 03 Jun 2017 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloVector Force
https://www.maplesoft.com/applications/view.aspx?SID=154245&ref=Feed
This worksheet is designed to develop engineering exercises with Maple applications. You should know the theory before using these applications. It is designed to solve problems faster. This is an easy-to-use interactive application. In Spanish.<img src="/view.aspx?si=154245/vecfza.png" alt="Vector Force" align="left"/>This worksheet is designed to develop engineering exercises with Maple applications. You should know the theory before using these applications. It is designed to solve problems faster. This is an easy-to-use interactive application. In Spanish.154245Tue, 09 May 2017 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloUniversal method of kinematic analysis of spatial and planar link mechanisms
https://www.maplesoft.com/applications/view.aspx?SID=154228&ref=Feed
The application of idea Draghilev method of solving systems of nonlinear equations for the kinematic analysis of link mechanisms with any number degrees of freedom.<img src="/view.aspx?si=154228/fig_2.jpg" alt="Universal method of kinematic analysis of spatial and planar link mechanisms" align="left"/>The application of idea Draghilev method of solving systems of nonlinear equations for the kinematic analysis of link mechanisms with any number degrees of freedom.154228Wed, 08 Mar 2017 05:00:00 ZAlexey IvanovAlexey IvanovAplicativo de Ecuaciones en primer orden
https://www.maplesoft.com/applications/view.aspx?SID=154139&ref=Feed
With this application you can develop your equations without the need to worry about the difficult calculation. Save calculation time and you will increase the time in interpreting the results. It was developed in Maple 2016 and can be executed in maple player.
In Spanish.<img src="/view.aspx?si=154139/appec.png" alt="Aplicativo de Ecuaciones en primer orden" align="left"/>With this application you can develop your equations without the need to worry about the difficult calculation. Save calculation time and you will increase the time in interpreting the results. It was developed in Maple 2016 and can be executed in maple player.
In Spanish.154139Sun, 07 Aug 2016 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloCentroid with defined integral
https://www.maplesoft.com/applications/view.aspx?SID=154064&ref=Feed
With this application and using the rules of calculation we can show that procedures embedded in Maple components can also be used for teaching purposes in engineering. <br/><br/> In Spanish.<img src="/view.aspx?si=154064/as.png" alt="Centroid with defined integral" align="left"/>With this application and using the rules of calculation we can show that procedures embedded in Maple components can also be used for teaching purposes in engineering. <br/><br/> In Spanish.154064Sun, 20 Mar 2016 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloOrdinary differential equation with Laplace Transform
https://www.maplesoft.com/applications/view.aspx?SID=154063&ref=Feed
Here the development of an ordinary differential equation using Laplace transforms, using interactive components. This worksheet is shown for teaching purposes. You can download the file to be used in a class for engineering students. <br/><br/> In Spanish.<img src="/view.aspx?si=154063/tl.png" alt="Ordinary differential equation with Laplace Transform" align="left"/>Here the development of an ordinary differential equation using Laplace transforms, using interactive components. This worksheet is shown for teaching purposes. You can download the file to be used in a class for engineering students. <br/><br/> In Spanish.154063Sat, 19 Mar 2016 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloStatically Indeterminate Structure
https://www.maplesoft.com/applications/view.aspx?SID=153940&ref=Feed
The application allows you to determine the constraint reactions, build diagrams of the normal forces N, shear forces Q and bending moments M for beams and frames with any number of sections and degree of static indefinability.
The application calculates the deformation (displacements) of the structure in millimeters and displays the displacements of nodes in the horizontal and vertical. It is also possible to calculate the displacement of any point of the structure.<img src="/view.aspx?si=153940/391e24e981ea8d11454375def604a185.gif" alt="Statically Indeterminate Structure" align="left"/>The application allows you to determine the constraint reactions, build diagrams of the normal forces N, shear forces Q and bending moments M for beams and frames with any number of sections and degree of static indefinability.
The application calculates the deformation (displacements) of the structure in millimeters and displays the displacements of nodes in the horizontal and vertical. It is also possible to calculate the displacement of any point of the structure.153940Wed, 09 Mar 2016 05:00:00 ZDr. Aleksey ShirkoDr. Aleksey ShirkoDemo Worksheet for Numerical Delay Differential Equation Solution
https://www.maplesoft.com/applications/view.aspx?SID=153939&ref=Feed
<P>This application shows several examples of modeling using delay differential equations in Maple. These examples are from the webinar <A HREF="http://www.maplesoft.com/products/maple/demo/player/2015/solvingdelaydiffeq.aspx">Solving Delay Differential Equations</A>.</P>
<P>Note: Requires Maple 2015.2 or later.</P><img src="/view.aspx?si=153939/dde.PNG" alt="Demo Worksheet for Numerical Delay Differential Equation Solution" align="left"/><P>This application shows several examples of modeling using delay differential equations in Maple. These examples are from the webinar <A HREF="http://www.maplesoft.com/products/maple/demo/player/2015/solvingdelaydiffeq.aspx">Solving Delay Differential Equations</A>.</P>
<P>Note: Requires Maple 2015.2 or later.</P>153939Wed, 16 Dec 2015 05:00:00 ZAllan WittkopfAllan WittkopfPV Diode Parameter Estimation
https://www.maplesoft.com/applications/view.aspx?SID=153908&ref=Feed
This application fits experimental I-V data to an equation that describes a photovoltaic diode.<img src="/view.aspx?si=153908/pvdiode.png" alt="PV Diode Parameter Estimation" align="left"/>This application fits experimental I-V data to an equation that describes a photovoltaic diode.153908Fri, 30 Oct 2015 04:00:00 ZSamir KhanSamir KhanGain of an Ideal and Non-Ideal Amplifier
https://www.maplesoft.com/applications/view.aspx?SID=153907&ref=Feed
This application models the ideal and non-ideal behavior of an amplifier.<img src="/view.aspx?si=153907/amplifiergain.png" alt="Gain of an Ideal and Non-Ideal Amplifier" align="left"/>This application models the ideal and non-ideal behavior of an amplifier.153907Fri, 30 Oct 2015 04:00:00 ZSamir KhanSamir KhanEconomic Pipe Sizer for Process Plants
https://www.maplesoft.com/applications/view.aspx?SID=153659&ref=Feed
<p>Pipework is a large part of the cost of a process plant. Plant designers need to minimize the total cost of this pipework across the lifetime of the plant. The total overall cost is a combination of individual costs related to the:</p>
<ul>
<li>pipe material,</li>
<li>installation, </li>
<li>maintenance, </li>
<li>depreciation, </li>
<li>energy costs for pumping, </li>
<li>liquid parameters, </li>
<li>required flowrate,</li>
<li>pumping efficiencies,</li>
<li>taxes,</li>
<li>and more.</li>
</ul>
<p>The total cost is not a simple linear sum of the individual costs; a more complex relationship is needed.</p>
<p>This application uses the approach described in [1] to find the pipe diameter that minimizes the total lifetime cost. The method involves the iterative solution of an empirical equation using <a href="/support/help/Maple/view.aspx?path=fsolve">Maple’s fsolve function</a> (the code for the application is in the Startup code region).</p>
<p>Users can choose the pipe material (carbon steel, stainless steel, aluminum or brass), and specify the desired fluid flowrate, fluid viscosity and density. The application then solves the empirical equation (using Maple’s fsolve() function) and returns the economically optimal pipe diameter.</p>
<p>Bear in mind that the empirical parameters used in the application vary as economic conditions change. Those used in this application are correct for 1998 and 2008.</p>
<p><em>[1]: "Updating the Rules for Pipe Sizing", Durand et al., Chemical Engineering, January 2010</em></p><img src="/applications/images/app_image_blank_lg.jpg" alt="Economic Pipe Sizer for Process Plants" align="left"/><p>Pipework is a large part of the cost of a process plant. Plant designers need to minimize the total cost of this pipework across the lifetime of the plant. The total overall cost is a combination of individual costs related to the:</p>
<ul>
<li>pipe material,</li>
<li>installation, </li>
<li>maintenance, </li>
<li>depreciation, </li>
<li>energy costs for pumping, </li>
<li>liquid parameters, </li>
<li>required flowrate,</li>
<li>pumping efficiencies,</li>
<li>taxes,</li>
<li>and more.</li>
</ul>
<p>The total cost is not a simple linear sum of the individual costs; a more complex relationship is needed.</p>
<p>This application uses the approach described in [1] to find the pipe diameter that minimizes the total lifetime cost. The method involves the iterative solution of an empirical equation using <a href="/support/help/Maple/view.aspx?path=fsolve">Maple’s fsolve function</a> (the code for the application is in the Startup code region).</p>
<p>Users can choose the pipe material (carbon steel, stainless steel, aluminum or brass), and specify the desired fluid flowrate, fluid viscosity and density. The application then solves the empirical equation (using Maple’s fsolve() function) and returns the economically optimal pipe diameter.</p>
<p>Bear in mind that the empirical parameters used in the application vary as economic conditions change. Those used in this application are correct for 1998 and 2008.</p>
<p><em>[1]: "Updating the Rules for Pipe Sizing", Durand et al., Chemical Engineering, January 2010</em></p>153659Fri, 15 Aug 2014 04:00:00 ZSamir KhanSamir KhanOptimizing the Design of a Coil Spring
https://www.maplesoft.com/applications/view.aspx?SID=153608&ref=Feed
<p>The design optimization of helical springs is of considerable engineering interest, and demands strong solvers. While the number of constraints is small, the coil and wire diameters are raised to higher powers; this makes the optimization difficult for gradient-based solvers working in standard floating-point precision; a larger number of working digits is needed.</p>
<p>Maple lets you increase the number of digits used in calculations; hence numerically difficult problems, like this, can be solved.</p>
<p>This application minimizes the mass of a helical spring. The constraints include the minimum deflection, the minimum surge wave frequency and the maximum stress, and a loading condition.</p>
<ul>
<li>the minimum deflection, </li>
<li>the minimum surge wave frequency, </li>
<li>the maximum stress, </li>
<li>and a loading condition.</li>
</ul>
<p>The design variables are the</p>
<ul>
<li>diameter of the wire, </li>
<li>the outside diameter of the spring,</li>
<li>and the number of coils</li>
</ul>
<p> Reference: "Introduction to Optimum Design", Jasbir S. Arora, 3<sup>rd</sup> Edition 2012.</p><img src="/view.aspx?si=153608/695d991fff8fb4975d1e1dcd90bb771d.gif" alt="Optimizing the Design of a Coil Spring" align="left"/><p>The design optimization of helical springs is of considerable engineering interest, and demands strong solvers. While the number of constraints is small, the coil and wire diameters are raised to higher powers; this makes the optimization difficult for gradient-based solvers working in standard floating-point precision; a larger number of working digits is needed.</p>
<p>Maple lets you increase the number of digits used in calculations; hence numerically difficult problems, like this, can be solved.</p>
<p>This application minimizes the mass of a helical spring. The constraints include the minimum deflection, the minimum surge wave frequency and the maximum stress, and a loading condition.</p>
<ul>
<li>the minimum deflection, </li>
<li>the minimum surge wave frequency, </li>
<li>the maximum stress, </li>
<li>and a loading condition.</li>
</ul>
<p>The design variables are the</p>
<ul>
<li>diameter of the wire, </li>
<li>the outside diameter of the spring,</li>
<li>and the number of coils</li>
</ul>
<p> Reference: "Introduction to Optimum Design", Jasbir S. Arora, 3<sup>rd</sup> Edition 2012.</p>153608Tue, 17 Jun 2014 04:00:00 ZSamir KhanSamir KhanWelded Beam Design Optimization
https://www.maplesoft.com/applications/view.aspx?SID=153592&ref=Feed
<p>A rigid member is welded onto a beam, with a load applied to the end of the member. The total cost of production is equal to the labor costs (a function of the weld dimensions) plus the cost of the weld and beam material.</p>
<p>The design of the beam is optimized to minimize the production costs by varying the weld and member dimensions.</p>
<p>The constraints include limits on the shear stress, bending stress, buckling load and end deflection, and several size constraints.</p>
<p>The application uses Maple’s non-linear optimizers</p><img src="/view.aspx?si=153592/0621a9aba622112f66506495e21f68d9.gif" alt="Welded Beam Design Optimization" align="left"/><p>A rigid member is welded onto a beam, with a load applied to the end of the member. The total cost of production is equal to the labor costs (a function of the weld dimensions) plus the cost of the weld and beam material.</p>
<p>The design of the beam is optimized to minimize the production costs by varying the weld and member dimensions.</p>
<p>The constraints include limits on the shear stress, bending stress, buckling load and end deflection, and several size constraints.</p>
<p>The application uses Maple’s non-linear optimizers</p>153592Fri, 30 May 2014 04:00:00 ZSamir KhanSamir KhanTuned Mass-Spring-Damper Design
https://www.maplesoft.com/applications/view.aspx?SID=153572&ref=Feed
<p>A mass-spring-damper is disturbed by a force that resonates at the natural frequency of the system.</p>
<p>This application calculates the optimum spring and damping constant of a parasitic tuned-mass damper that the minimizes the vibration of the system.</p>
<p>The vibration of system with and without the tuned mass-spring-damper is viewed as a frequency response, time-domain simulation and power spectrum.</p><img src="/view.aspx?si=153572/cdf00085048c6b59e75db56bb6c0210b.gif" alt="Tuned Mass-Spring-Damper Design" align="left"/><p>A mass-spring-damper is disturbed by a force that resonates at the natural frequency of the system.</p>
<p>This application calculates the optimum spring and damping constant of a parasitic tuned-mass damper that the minimizes the vibration of the system.</p>
<p>The vibration of system with and without the tuned mass-spring-damper is viewed as a frequency response, time-domain simulation and power spectrum.</p>153572Wed, 07 May 2014 04:00:00 ZSamir KhanSamir KhanOptimizing the Design of a Fuel Pod with NX and Maple
https://www.maplesoft.com/applications/view.aspx?SID=153573&ref=Feed
<p>A manufacturer has designed a fuel pod in NX. The fuel pod has a hemispherical and conical end, and a cylindrical mid-section. To minimize material costs, the manufacturer wants to minimize the surface area of the fuel pod while maintaining the existing volume.</p>
<p>This application:</p>
<ul>
<li>pulls the current dimensions of the fuel pod (radius of the hemispherical end, length of the cylindrical midsection, and height of the conical end) from the NX CAD model, </li>
<li>calculates the current volume of the fuel pod,</li>
<li>optimizes the dimensions to minimize the surface area while maintaining the existing volume,</li>
<li>and pushes the optimized dimensions back into the NX CAD model.</li>
</ul>
<p>NOTE: To use this application, you must</p>
<ul>
<li>have a supported version of NX installed, </li>
<li>load canisterOptimization.prt in NX (this is the CAD model of the fuel pod),</li>
<li>ensure the NX-Maple link works correctly.</li>
</ul><img src="/view.aspx?si=153573/fuelpod.jpg" alt="Optimizing the Design of a Fuel Pod with NX and Maple" align="left"/><p>A manufacturer has designed a fuel pod in NX. The fuel pod has a hemispherical and conical end, and a cylindrical mid-section. To minimize material costs, the manufacturer wants to minimize the surface area of the fuel pod while maintaining the existing volume.</p>
<p>This application:</p>
<ul>
<li>pulls the current dimensions of the fuel pod (radius of the hemispherical end, length of the cylindrical midsection, and height of the conical end) from the NX CAD model, </li>
<li>calculates the current volume of the fuel pod,</li>
<li>optimizes the dimensions to minimize the surface area while maintaining the existing volume,</li>
<li>and pushes the optimized dimensions back into the NX CAD model.</li>
</ul>
<p>NOTE: To use this application, you must</p>
<ul>
<li>have a supported version of NX installed, </li>
<li>load canisterOptimization.prt in NX (this is the CAD model of the fuel pod),</li>
<li>ensure the NX-Maple link works correctly.</li>
</ul>153573Wed, 07 May 2014 04:00:00 ZSamir KhanSamir Khan