General: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=162
en-us2017 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemThu, 23 Nov 2017 03:54:33 GMTThu, 23 Nov 2017 03:54:33 GMTNew applications in the General categoryhttp://www.mapleprimes.com/images/mapleapps.gifGeneral: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=162
Wilks Calculator
https://www.maplesoft.com/applications/view.aspx?SID=154359&ref=Feed
A program designed to calculate your Wilks Coefficient, a number that is used to compare lifters between 2 weight classes, such as 59kg and 105kg, by using body weight and total weight lifted.<img src="/applications/images/app_image_blank_lg.jpg" alt="Wilks Calculator" align="left"/>A program designed to calculate your Wilks Coefficient, a number that is used to compare lifters between 2 weight classes, such as 59kg and 105kg, by using body weight and total weight lifted.154359Tue, 14 Nov 2017 05:00:00 ZDaniel ChesloDaniel ChesloThe Carpet of Baron Munchausen
https://www.maplesoft.com/applications/view.aspx?SID=154349&ref=Feed
The floor in the drawing room of Baron Munchausen is paved with identical square stones. The Baron claims that his new carpet (made of a single piece of a material ) covers exactly 24 stones and at the same time, each vertical and each horizontal row of stones in the living room contains exactly 4 stones covered with carpet. This application finds all solutions to this puzzle from the 2001 Russian Mathematical Olympiad.<img src="/view.aspx?si=154349/carpet.JPG" alt="The Carpet of Baron Munchausen" align="left"/>The floor in the drawing room of Baron Munchausen is paved with identical square stones. The Baron claims that his new carpet (made of a single piece of a material ) covers exactly 24 stones and at the same time, each vertical and each horizontal row of stones in the living room contains exactly 4 stones covered with carpet. This application finds all solutions to this puzzle from the 2001 Russian Mathematical Olympiad.154349Mon, 23 Oct 2017 04:00:00 ZYury ZavarovskyYury ZavarovskyPrime Number ASCII Art
https://www.maplesoft.com/applications/view.aspx?SID=154298&ref=Feed
This application turns an image into prime number ascii art. The ascii image is made up of digits that
form a single (long!) prime number. This application is the companion to the MaplePrimes blog post, <A HREF="https://www.mapleprimes.com/maplesoftblog/208543-Is-This-The-Most-Maple-Prime-Post-Ever">Is This
the Most Maple Prime Post Ever on MaplePrimes?</A><img src="/view.aspx?si=154298/leaf.PNG" alt="Prime Number ASCII Art" align="left"/>This application turns an image into prime number ascii art. The ascii image is made up of digits that
form a single (long!) prime number. This application is the companion to the MaplePrimes blog post, <A HREF="https://www.mapleprimes.com/maplesoftblog/208543-Is-This-The-Most-Maple-Prime-Post-Ever">Is This
the Most Maple Prime Post Ever on MaplePrimes?</A>154298Wed, 20 Sep 2017 04:00:00 ZJohn MayJohn MayMathematics for Chemistry
https://www.maplesoft.com/applications/view.aspx?SID=154267&ref=Feed
This interactive electronic textbook in the form of Maple worksheets comprises two parts.
<BR><BR>
Part I, mathematics for chemistry, is supposed to cover all mathematics that an instructor of chemistry might hope and expect that his students would learn, understand and be able to apply as a result of sufficient courses typically, but not exclusively, presented in departments of mathematics. Its nine chapters include (0) a summary and illustration of useful Maple commands, (1) arithmetic, algebra and elementary functions, (2) plotting, descriptive geometry, trigonometry, series, complex functions, (3) differential calculus of one variable, (4) integral calculus of one variable, (5) multivariate calculus, (6) linear algebra including matrix, vector, eigenvector, vector calculus, tensor, spreadsheet, (7) differential and integral equations, and (8) probability, distribution, treatment of laboratory data, linear and non-linear regression and optimization.
<BR><BR>
Part II presents mathematical topics typically taught within chemistry courses, including (9) chemical equilibrium, (10) group theory, (11) graph theory, (12a) introduction to quantum mechanics and quantum chemistry, (14) applications of Fourier transforms in chemistry including electron diffraction, x-ray diffraction, microwave spectra, infrared and Raman spectra and nuclear-magnetic-resonance spectra, and (18) dielectric and magnetic properties of chemical matter.
<BR><BR>
Other chapters are in preparation and will be released in due course.<img src="/view.aspx?si=154267/molecule.PNG" alt="Mathematics for Chemistry" align="left"/>This interactive electronic textbook in the form of Maple worksheets comprises two parts.
<BR><BR>
Part I, mathematics for chemistry, is supposed to cover all mathematics that an instructor of chemistry might hope and expect that his students would learn, understand and be able to apply as a result of sufficient courses typically, but not exclusively, presented in departments of mathematics. Its nine chapters include (0) a summary and illustration of useful Maple commands, (1) arithmetic, algebra and elementary functions, (2) plotting, descriptive geometry, trigonometry, series, complex functions, (3) differential calculus of one variable, (4) integral calculus of one variable, (5) multivariate calculus, (6) linear algebra including matrix, vector, eigenvector, vector calculus, tensor, spreadsheet, (7) differential and integral equations, and (8) probability, distribution, treatment of laboratory data, linear and non-linear regression and optimization.
<BR><BR>
Part II presents mathematical topics typically taught within chemistry courses, including (9) chemical equilibrium, (10) group theory, (11) graph theory, (12a) introduction to quantum mechanics and quantum chemistry, (14) applications of Fourier transforms in chemistry including electron diffraction, x-ray diffraction, microwave spectra, infrared and Raman spectra and nuclear-magnetic-resonance spectra, and (18) dielectric and magnetic properties of chemical matter.
<BR><BR>
Other chapters are in preparation and will be released in due course.154267Tue, 30 May 2017 04:00:00 ZProf. John OgilvieProf. John OgilvieRolling without slipping on Mobius strip
https://www.maplesoft.com/applications/view.aspx?SID=154226&ref=Feed
Consider the classical equation of a Mobius strip in parametric form. By using animation shows how movement can occur on the non-oriented surface. We will choose the route as the closed curve belonging to the surface. The sphere was selected as moving geometric object that visually continuously rolls over the surface of a Mobius strip.<img src="/view.aspx?si=154226/mobius_strip_rolling.PNG" alt="Rolling without slipping on Mobius strip" align="left"/>Consider the classical equation of a Mobius strip in parametric form. By using animation shows how movement can occur on the non-oriented surface. We will choose the route as the closed curve belonging to the surface. The sphere was selected as moving geometric object that visually continuously rolls over the surface of a Mobius strip.154226Thu, 16 Feb 2017 05:00:00 ZAlexey IvanovAlexey IvanovCombining Multiple Animations in Maple
https://www.maplesoft.com/applications/view.aspx?SID=154222&ref=Feed
In this document, we show to build up complex animations by showing different ways to combine existing animations. We illustrate this using three animations, however, the techniques are general and can be applied to any number of animations.
<BR><BR>
This application is also the subject of a post on MaplePrimes: <A HREF="http://www.mapleprimes.com/posts/207840-Combinations-Of-Multiple-Animations">Combinations of multiple animations</A><img src="/view.aspx?si=154222/multipleAnimations.jpg" alt="Combining Multiple Animations in Maple" align="left"/>In this document, we show to build up complex animations by showing different ways to combine existing animations. We illustrate this using three animations, however, the techniques are general and can be applied to any number of animations.
<BR><BR>
This application is also the subject of a post on MaplePrimes: <A HREF="http://www.mapleprimes.com/posts/207840-Combinations-Of-Multiple-Animations">Combinations of multiple animations</A>154222Tue, 07 Feb 2017 05:00:00 ZYury ZavarovskyYury ZavarovskyFactorizing with non-commutative variables
https://www.maplesoft.com/applications/view.aspx?SID=154166&ref=Feed
New capabilities for factorizing expressions involving noncommutative variables are presented and illustrated with a set of examples.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201368-New-Factorizing-With-Noncommutative-Variables">blog post on MaplePrimes</A>.<img src="/applications/images/app_image_blank_lg.jpg" alt="Factorizing with non-commutative variables" align="left"/>New capabilities for factorizing expressions involving noncommutative variables are presented and illustrated with a set of examples.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201368-New-Factorizing-With-Noncommutative-Variables">blog post on MaplePrimes</A>.154166Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabNth order derivatives and Faa di Bruno formula
https://www.maplesoft.com/applications/view.aspx?SID=154167&ref=Feed
New formulas for symbolic order differentiation and the first ever implementation in computer algebra of the formula by Faa di Bruno for the symbolic order differentiation of composite functions are presented.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201214-Nth-Order-Derivatives-And-Faa-Di-Bruno-Formula">blog post on MaplePrimes</A>.<img src="/applications/images/app_image_blank_lg.jpg" alt="Nth order derivatives and Faa di Bruno formula" align="left"/>New formulas for symbolic order differentiation and the first ever implementation in computer algebra of the formula by Faa di Bruno for the symbolic order differentiation of composite functions are presented.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201214-Nth-Order-Derivatives-And-Faa-Di-Bruno-Formula">blog post on MaplePrimes</A>.154167Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabMathematicalFunctions:-Sequences
https://www.maplesoft.com/applications/view.aspx?SID=154162&ref=Feed
In this presentation, the <A HREF="/support/help/Maple/view.aspx?path=MathematicalFunctions/Sequences/Nops">MathematicalFunctions:-Sequences package</A>, to add, multiply, differentiate, or map operations over the elements of symbolic sequences (i.e. sequences where the number of elements of the sequence is not known, just represented by a symbol), is presented.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201103-MathematicalFunctionsSequences">blog post on MaplePrimes</A>.<img src="/applications/images/app_image_blank_lg.jpg" alt="MathematicalFunctions:-Sequences" align="left"/>In this presentation, the <A HREF="/support/help/Maple/view.aspx?path=MathematicalFunctions/Sequences/Nops">MathematicalFunctions:-Sequences package</A>, to add, multiply, differentiate, or map operations over the elements of symbolic sequences (i.e. sequences where the number of elements of the sequence is not known, just represented by a symbol), is presented.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201103-MathematicalFunctionsSequences">blog post on MaplePrimes</A>.154162Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabA Presidential Election Game: 2016 Edition
https://www.maplesoft.com/applications/view.aspx?SID=154122&ref=Feed
This application is an educational activity modeling the current system of U. S. Presidential Elections. It is set up in the form of a game in which each player manages a candidate from one of the United States' two major parties. Eight turns simulate an eight week long campaign, with players' decisions affecting the standings of their candidates in state-by-state polls. After the campaign is complete, these polls are used to simulated elections within each state and the District of Columbia and a winner is determined according to the Electoral College results.
This is a modified version of A Presidential Election Game: 2008 Edition and 2012 Edition. Electoral College, candidate and polling information have been updated.<img src="/view.aspx?si=154122/Game_Worksheet_Picture.png" alt="A Presidential Election Game: 2016 Edition" align="left"/>This application is an educational activity modeling the current system of U. S. Presidential Elections. It is set up in the form of a game in which each player manages a candidate from one of the United States' two major parties. Eight turns simulate an eight week long campaign, with players' decisions affecting the standings of their candidates in state-by-state polls. After the campaign is complete, these polls are used to simulated elections within each state and the District of Columbia and a winner is determined according to the Electoral College results.
This is a modified version of A Presidential Election Game: 2008 Edition and 2012 Edition. Electoral College, candidate and polling information have been updated.154122Wed, 15 Jun 2016 04:00:00 ZLinh Nguyen and Danielle PetkovsekLinh Nguyen and Danielle PetkovsekFractal Leaf Generator
https://www.maplesoft.com/applications/view.aspx?SID=154086&ref=Feed
This application generates Barnsley Fern fractals, using the number of iterations specified by the user.<img src="/view.aspx?si=154086/fractalleafThumb.jpg" alt="Fractal Leaf Generator" align="left"/>This application generates Barnsley Fern fractals, using the number of iterations specified by the user.154086Wed, 20 Apr 2016 04:00:00 ZMaplesoftMaplesoftHoliday Greetings and Tupper’s Self-Referential Formula
https://www.maplesoft.com/applications/view.aspx?SID=153935&ref=Feed
Want to send a Holiday greeting to a fellow Maple user? Then send them this worksheet - it's a seasonal spin on the classic Tupper’s Self-Referential Formula.<img src="/view.aspx?si=153935/teaserimage.png" alt="Holiday Greetings and Tupper’s Self-Referential Formula" align="left"/>Want to send a Holiday greeting to a fellow Maple user? Then send them this worksheet - it's a seasonal spin on the classic Tupper’s Self-Referential Formula.153935Fri, 11 Dec 2015 05:00:00 ZSamir KhanSamir KhanEscapeTime Fractals
https://www.maplesoft.com/applications/view.aspx?SID=153882&ref=Feed
<P>
The <A HREF="/support/help/Maple/view.aspx?path=Fractals/EscapeTime">Fractals</A> package in Maple makes it easier to create and explore popular fractals, including the Mandelbrot, Julia, Newton, and other time-iterative fractals. The Fractals package can quickly apply various escape time iterative maps over rectangular regions in the complex plane, the results of which consist of images that approximate well-known fractal sets. In the following application, you can explore escape time fractals by manipulating parameters pertaining to the generation of Mandelbrot, Julia, Newton and Burning Ship fractals.</P>
<P>
<B>Also:</B> You can <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=5690839489576960">interact with this application</A> in the MapleCloud!</P><img src="/view.aspx?si=153882/escapetimefractal.png" alt="EscapeTime Fractals" align="left"/><P>
The <A HREF="/support/help/Maple/view.aspx?path=Fractals/EscapeTime">Fractals</A> package in Maple makes it easier to create and explore popular fractals, including the Mandelbrot, Julia, Newton, and other time-iterative fractals. The Fractals package can quickly apply various escape time iterative maps over rectangular regions in the complex plane, the results of which consist of images that approximate well-known fractal sets. In the following application, you can explore escape time fractals by manipulating parameters pertaining to the generation of Mandelbrot, Julia, Newton and Burning Ship fractals.</P>
<P>
<B>Also:</B> You can <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=5690839489576960">interact with this application</A> in the MapleCloud!</P>153882Fri, 25 Sep 2015 04:00:00 ZMaplesoftMaplesoftMaplets de sudoku GSudoku5M et SudokuE8f-L
https://www.maplesoft.com/applications/view.aspx?SID=153753&ref=Feed
<p>Les 2 interfaces pour le sudoku généralisé à régions n*m</p>
<p>(on peut insérer e et r dans rectangle rouge de la maplet GSudoku5L pour effacer et avoir la réponse)</p>
<p>(on peut utiliser ds4windows pour jouer avec une manette Dualshock 4 à GSudoku5M en utilisant "Alt+key"</p><img src="/view.aspx?si=153753/CaptGSudoku5h.JPG" alt="Maplets de sudoku GSudoku5M et SudokuE8f-L" align="left"/><p>Les 2 interfaces pour le sudoku généralisé à régions n*m</p>
<p>(on peut insérer e et r dans rectangle rouge de la maplet GSudoku5L pour effacer et avoir la réponse)</p>
<p>(on peut utiliser ds4windows pour jouer avec une manette Dualshock 4 à GSudoku5M en utilisant "Alt+key"</p>153753Fri, 18 Sep 2015 04:00:00 Zxavier cormierxavier cormierKnight's Tour
https://www.maplesoft.com/applications/view.aspx?SID=153842&ref=Feed
A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square only once.
This application presents the implementation of this task in Maple.<img src="/view.aspx?si=153842/26f19bd457ac566083dec1b86db8b91b.gif" alt="Knight's Tour" align="left"/>A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square only once.
This application presents the implementation of this task in Maple.153842Thu, 13 Aug 2015 04:00:00 ZYury ZavarovskyYury ZavarovskyRepresentation Triangles for Three Candidate Elections
https://www.maplesoft.com/applications/view.aspx?SID=135757&ref=Feed
<p>This application takes ranking data from a three person election and creates representation triangles that depict the results of the election both numerically and geometrically for a number of different voting systems. The numerical profile makes it straightforward to calculate the results of the election under a number of different systems while the geometric profile displays the procedure line and the approval voting region and specifically the plurality, anti-plurality and Borda count results. </p>
<p>This is an improvement over the first author's earlier, similar application. The geometric profile is rendered as a two-dimensional object and additional election results are made explicit.</p><img src="/view.aspx?si=135757/135757_thumb.jpg" alt="Representation Triangles for Three Candidate Elections" align="left"/><p>This application takes ranking data from a three person election and creates representation triangles that depict the results of the election both numerically and geometrically for a number of different voting systems. The numerical profile makes it straightforward to calculate the results of the election under a number of different systems while the geometric profile displays the procedure line and the approval voting region and specifically the plurality, anti-plurality and Borda count results. </p>
<p>This is an improvement over the first author's earlier, similar application. The geometric profile is rendered as a two-dimensional object and additional election results are made explicit.</p>135757Thu, 11 Jun 2015 04:00:00 ZDr. Joseph KolacinskiDr. Joseph KolacinskiSudoku tactile généralisé (version finale)
https://www.maplesoft.com/applications/view.aspx?SID=124424&ref=Feed
<p>Mes 3 maplets de sudoku (à régions n*m) en version finale.</p>
<p>(SudokuE8f-L avec radiobutton,GSudoku3 avec popupmenu et GSudoku4 avec popupmenu et croix directionnelle).</p><img src="/view.aspx?si=124424/capsud.PNG" alt="Sudoku tactile généralisé (version finale)" align="left"/><p>Mes 3 maplets de sudoku (à régions n*m) en version finale.</p>
<p>(SudokuE8f-L avec radiobutton,GSudoku3 avec popupmenu et GSudoku4 avec popupmenu et croix directionnelle).</p>124424Mon, 19 Jan 2015 05:00:00 Zxavier cormierxavier cormierThe Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae
https://www.maplesoft.com/applications/view.aspx?SID=153706&ref=Feed
<p> Abstract<br /><br />The Rosetta space probe launched 10 years ago by the European Space Agency (ESA) arrived recently (November 12, 2014) at the site of the comet known as 67P/Churyumov-Gerasimenco after a trip of 4 billions miles from Earth. After circling the comet, Rosetta released its precious load : the lander Philae packed with 21 different scientific instruments for the study of the comet with the main purpose : the origin of our solar system and possibly the origin of life on our planet.<br /><br />Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.<br />We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.<br /><br />We want to find:<br /><br />I- the acceleration on the comet surface ,<br />II- its radius,<br />III- its density,<br />IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),<br />V- the time for Philae to reach altitude of 1000 m above the comet .<br /><br />We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.<br />It turned out that our calculations for a sphere shaped comet are very close to the already known data.<br /><br />Conclusion<br /><br />Even with a shape that defies the application of any mechanical laws we can always get very close to reality by adopting a simplified mathematical model in any preliminary study of a complicated problem.<br /><br /></p><img src="/applications/images/app_image_blank_lg.jpg" alt="The Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae" align="left"/><p> Abstract<br /><br />The Rosetta space probe launched 10 years ago by the European Space Agency (ESA) arrived recently (November 12, 2014) at the site of the comet known as 67P/Churyumov-Gerasimenco after a trip of 4 billions miles from Earth. After circling the comet, Rosetta released its precious load : the lander Philae packed with 21 different scientific instruments for the study of the comet with the main purpose : the origin of our solar system and possibly the origin of life on our planet.<br /><br />Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.<br />We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.<br /><br />We want to find:<br /><br />I- the acceleration on the comet surface ,<br />II- its radius,<br />III- its density,<br />IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),<br />V- the time for Philae to reach altitude of 1000 m above the comet .<br /><br />We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.<br />It turned out that our calculations for a sphere shaped comet are very close to the already known data.<br /><br />Conclusion<br /><br />Even with a shape that defies the application of any mechanical laws we can always get very close to reality by adopting a simplified mathematical model in any preliminary study of a complicated problem.<br /><br /></p>153706Mon, 17 Nov 2014 05:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyHollywood Math 2
https://www.maplesoft.com/applications/view.aspx?SID=153681&ref=Feed
<p>Over the years, Hollywood has entertained us with many mathematical moments in film and television, often in unexpected places. In this application, you’ll find several examples of Hollywood Math, including Fermat’s Last Theorem and <em>The Simpsons</em>, the Monty Hall problem in <em>21</em>, and a discussion of just how long that runway actually was in <em>The Fast and the Furious</em>. These examples are also presented in <a href="/webinars/recorded/featured.aspx?id=782">Hollywood Math 2: The Recorded Webinar</a>.</p>
<p>For even more examples, see <a href="/applications/view.aspx?SID=6611">Hollywood Math: The Original Episode</a>.</p><img src="/view.aspx?si=153681/HollywoodMath2.jpg" alt="Hollywood Math 2" align="left"/><p>Over the years, Hollywood has entertained us with many mathematical moments in film and television, often in unexpected places. In this application, you’ll find several examples of Hollywood Math, including Fermat’s Last Theorem and <em>The Simpsons</em>, the Monty Hall problem in <em>21</em>, and a discussion of just how long that runway actually was in <em>The Fast and the Furious</em>. These examples are also presented in <a href="/webinars/recorded/featured.aspx?id=782">Hollywood Math 2: The Recorded Webinar</a>.</p>
<p>For even more examples, see <a href="/applications/view.aspx?SID=6611">Hollywood Math: The Original Episode</a>.</p>153681Tue, 23 Sep 2014 04:00:00 ZMaplesoftMaplesoftDescartes & Mme La Marquise du Chatelet And The Elastic Collision of Two Bodies
https://www.maplesoft.com/applications/view.aspx?SID=153515&ref=Feed
<p><strong><em> ABSTRACT<br /> <br /> The Marquise</em></strong> <strong><em>du Chatelet in her book " Les Institutions Physiques" published in 1740, stated on page 36, that Descartes, when formulating his laws of motion in an elastic collision of two bodies B & C (B being more massive than C) <span >having the same speed v</span>, said that t<span >he smaller one C will reverse its course </span>while <span >the more massive body B will continue its course in the same direction as before</span> and <span >both will have again the same speed v.<br /> <br /> </span>Mme du Chatelet, basing her judgment on theoretical considerations using <span >the principle of continuity</span> , declared that Descartes was <span >wrong</span> in his statement. For Mme du Chatelet the larger mass B should reverse its course and move in the opposite direction. She mentioned nothing about both bodies B & C as <span >having the same velocity after collision as Descartes did</span>.<br /> <br /> At the time of Descartes, some 300 years ago, the concept of kinetic energy & momentum as we know today was not yet well defined, let alone considered in any physical problem.<br /> <br /> Actually both Descartes & Mme du Chatelet may have been right in some special cases but not in general as the discussion that follows will show.</em></strong></p><img src="/applications/images/app_image_blank_lg.jpg" alt="Descartes & Mme La Marquise du Chatelet And The Elastic Collision of Two Bodies" align="left"/><p><strong><em> ABSTRACT<br /> <br /> The Marquise</em></strong> <strong><em>du Chatelet in her book " Les Institutions Physiques" published in 1740, stated on page 36, that Descartes, when formulating his laws of motion in an elastic collision of two bodies B & C (B being more massive than C) <span >having the same speed v</span>, said that t<span >he smaller one C will reverse its course </span>while <span >the more massive body B will continue its course in the same direction as before</span> and <span >both will have again the same speed v.<br /> <br /> </span>Mme du Chatelet, basing her judgment on theoretical considerations using <span >the principle of continuity</span> , declared that Descartes was <span >wrong</span> in his statement. For Mme du Chatelet the larger mass B should reverse its course and move in the opposite direction. She mentioned nothing about both bodies B & C as <span >having the same velocity after collision as Descartes did</span>.<br /> <br /> At the time of Descartes, some 300 years ago, the concept of kinetic energy & momentum as we know today was not yet well defined, let alone considered in any physical problem.<br /> <br /> Actually both Descartes & Mme du Chatelet may have been right in some special cases but not in general as the discussion that follows will show.</em></strong></p>153515Fri, 07 Mar 2014 05:00:00 ZDr. Ahmed BaroudyDr. Ahmed Baroudy