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This problem solves for the minimal radius of curvature for designing and building a banked curve on a 
road assuming a constant speed and elevation. It is written using the approach found in the modern 
introductory undergraduate physics textbook: Matter and Interaction, by Chabay and Sherwood. It 
demonstrates the pedagogical value of Maple's ability to teach physics and to solve problems starting 
from fundamental principles, i.e., a top-down approach. This is in contrast to most computational 
systems where one codes starting from a specific example before implementing the fundamental 
principles.

This application can be used to:

a) confirm the values found in the manual for the American Association of State Highway and 
Transportation Officials (AASHTO) that engineers use to design and build these banked curves are 
physically sound.  

b) highlight the pedagogical value inherent in the Maple language to distinguish between
assignment ( := )  and equivalence (  =  );

c) most importantly, to demonstrate the pedagogical value Maple has in thinking about solving a 
problem involving a physical process. Given Maple's symbolic mathematics capabilities, one can 
implement a top-down approach to the physics and the mathematics, working from the general principle 
to the specific example. This allows one to avoid the types of errors that occur when translating the 
problem into a bottom up approach, from specific values of the example to the general principle, an 
approach that is required by most other computational systems. 

I hope that others are willing to continue to engage in discussions related to the pedagogical value of 
Maple beyond mathematics. 

The problem: 

The problem is to determine the minimal radius of curvature of a banked highway curve for a vehicle 
traveling at a fixed speed and altitude. This radius is determined by the following parameters: the speed 
of the vehicle through the curve, the gradient of the banking, and frictional component between the tires 
of the vehicle and the road.  The top-down view of the vehicle traveling through the curve is shown here:

While in the turn, the vehicle is to maintain a constant speed and its vertical elevation does not change.  
The curve has a radius of curvature of r. Notice r is purely horizontal.  We will analyze the interactions 



the vehicle has with the road using this next figure. 

In this cross-sectional view of its motion, the vehicle is traveling away from the reader. Note the 
coordinate system chosen in the figure.
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Since this is a mechanical system, we will analyze this situation using the Momentum Principle, (often 
referred to as Newton's 2nd Law of motion in traditional physics textbooks):

  

where  is the vector description of the momentum of a body, and  is the vector sum of the external 
forces on the body. In this system, the body will be the vehicle. For convenience, and because there is no
way the vehicle is traveling at a speed close to the speed of light:  where m is the mass of the 
vehicle, and  is the velocity of the vehicle. 

Even though the vehicle travels with a constant speed and elevation, because it is changing its direction, 
it's velocity, and thus momentum, is changing  Hence, we know there is a non-zero net force acting on 
the vehicle. If there were no net force, the vehicle would continue to travel in a straight line. 

Let us create a vector-based equation which we will name:  . (The vector arrow above the term is to
remind us that this a vector based equation.)   To this name, we will assign the momentum principle 
equation. The momentum principle equation describes the equivalence of the time rate of change of 
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momentum to the net force:
 

We will use the cross-sectional view figure to write out all the vectors. In Cartesian coordinates, the +x 
direction is to the right, the +y direction is up, the +z direction is out of the page.  In this figure, the 
direction of the change of momentum is completely to the left. Hence we can assign components to the 

 vector. Because only the direction of the magnitude of the momentum is changing, we can show 

geometrically that the magnitude of the time rate of change in momentum is equivalent to . The 

vehicle is moving in a circle in the first figure, or what some people refer to as centripetal motion For the
vector    we use the coordinates of the second figure and assign to it the following components in 
symbolic form: 

Note the negative sign in the x component. This is because the direction of change is to the left.

Next we work on the right-hand-side of the momentum principle equation. The net force is due to the 
sum of all the forces caused by all the interactions of the vehicle with the environment, i.e., that which is
not in the system. There are three significant entities: 
 * the air molecules, which are hitting the vehicle in the front as it move into the -z direction, 
 * the Earth, which is interacting with the vehicle through its gravitational field,
 * the road, which is making solid contact with the tires of the vehicle. 

Hence we can assign to the net force term the vector addition of theses forces of interaction:  

Now we discuss each interaction force. 

Air: The air molecules collided with the vehicle in the opposite direction that the vehicle is traveling. 
That direction in the second figure is purely in the +z direction. Hence we can assign to the vector  
its components:

where  is the magnitude of the force of the air molecules.

The Earth: it is interacting with the vehicle through the gravitational field of the Earth. At the surface, 
that field is pointing purely in the -y direction. Hence we can write:
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Note the difference between the vector field expression,  and its magnitude, g.

The road: the force of the road where the wheels are making contact with the road. The force vector of a 
solid-solid interaction is usually broken up into two vectors. One force vector of the road is that of it 
pushing directly against the vehicle compressing the atoms in the tires. The other force vector is that of  
the road pushing on the wheels sideways to the interface to keep the car wheels from slipping with 
respect to the road. This anti-slipping force is what we often refer to as the friction of the road.  And 
since we don't want the tires to slip, this is referred to as static friction. 

We can assign these classifications of forces to the force of the road vector:

The road compressing the tires, which is the force of reciprocity of the tires compressing the, (also 
known as the reaction force in Newton's 3rd law), is perpendicular or "normal" to the interface of the 
two solids.  Traditionally this is referred to as the "normal force", but often, this term leads to much 
confusion by students and some instructors. There is no force of a "perpendicular"; there is a force of the

x axis 

on the x-y plane, the perpendicular direction at an angle  from the +x direction. As always, the x-

component of the vector is related to the magnitude of the vector and the cosine of the angle, while the y-
component of the vector is related to the magnitude of the vector and the sine of the angle. Hence we 
assign to this compression force its components:

 is the magnitude of the compression force.  Now, you may have learned how to trigonometrically 
simplify these components, but why apply them. Maple will do it all for you! So set it up correctly and 
let Maple do the math.

The friction between the vehicle wheels and the road is parallel to the interface, hence it can be broken 
up into two vectors, one which is in the same direction the the direction of motion, and one which is 
perpendicular to the direction of motion. If the road does not provide a component parallel to the 
direction of the motion, the air will slow down the vehicle. This force of propulsion by the road is the 
force of reciprocity, or reaction force, of the tires pushing on the road to move the car forward. Hence 
this vector component of the friction by the road is purely in the -z direction. 

The other vector force of the friction term is the one that which is keeping the vehicle from slipping 
perpendicular to its direction of motion, either up or down the banked curve. It is purely in x-y plane of 
the figure above. Since the vehicle is moving fast and the curve is turning to the left, the friction will 
keep the car from sliding up over the top of the banked curve. Hence its direction is also to the left, but 
parallel to the interface, hence down the embankment. [Aside: Notice in the second figure the force of 
the road is not purely perpendicular to the road-tire interface? That because it is a combination of this 
frictional force and the compression force.]  By the way, if one guesses wrong here about the direction 
of the force, the resulting radius calculations will be negative.

Given the force that is pointing down the road toward the center, the angle of this frictional component 
vector to the +x .  Thus we can now make the following 3 assignments:
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 is the magnitude of this no-slipping frictional force. 

One last bit of physics:  
* we know that experimentally, we can approximate the magnitude of the component of the friction to 
keep the vehicle from slipping with the magnitude of the compression force:  

. 

The term  is called the coefficient of static friction. Since we want to find the minimal radius, thus we 
need to apply the maximum friction, we can use the full expression for the magnitude of the slipping 
frictional force.  Hence we can assign to the magnitude of the frictional force vector: 

We seem to have a great deal of equations. But so what! Let Maple do the math! By starting with a top 
down approach, and filling each term with the combination of more detailed terms, we are unlikely to 
make an error in the application of the physics and the mathematical relationships.

Now that we have continually added more details to our momentum principle relationship, it is the time 
to see what the highly detailed vector equation looks like: (Note, the Maple command simplify is not 
required for this example, but is good practice. simplify forces Maple to evaluate every term when it 
shows it to us.)

A reminder, our goal is to determine the relationship of r, the radius of curvature of the turn, to all the 
known properties of the system. 

What are the other unknowns in this vector equation? We don't know the force of the air, nor the force 
of the ground propelling the vehicle forward, but they aren't important in the calculation the r so we will 
ignore the z-component of the equation. (Even without Maple we can see that  and they 
disappear from the goal of this problem.) We don't know the force of compression of the road back onto 
the vehicle, but we don't know the mass of the vehicle.  Maybe the mass will cancel itself out since we 
don't build different curves for vehicles of different weights.  It is assumed we know the speed of the 
vehicle and the coefficient of friction. 

Here it would be great if we could simply give Maple the vector equation and ask it to solve for the 
scalar values. However, the command solve requires a list, or set, of equations. Hence we have to break 
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our vector equation up into an equation for each component. For me, the most readable way to see this is
to equate each component of the left hand side of the equation to its equivalent component of the right 
hand side and assign these equivalences to the name p_eqs:

Note we are using only the first 2 equations / components. Now we can solve the set "{ }" of equations 
for the set of unknown variables:

This allows us to solve for the radius of curvature, r :

  

It shows that the radius is independent of the mass of the vehicle, which is great since we don't have to 
build different shaped turns for different vehicles. Actually, it is not a surprised because of the 
equivalence of the inertial mass to the gravitational mass. But that is for another discussion.

Now we ask: does the expression for r make sense? Let us vary the variables in the solution and see if 
we obtain physically reasonable behavior.

1) The faster the vehicle, the greater the radius one has to build the turn. Yes, that makes sense in our 
own sense of trying to change directions while running vs. walking on a flat surface. It is easier to turn 
the corner quickly when walking than when running.

smaller the radius that is required.  This makes physical sense as the heavily banked road can help us 
turn the corner more quickly.

So it looks good. Remember, if we are working with a slower vehicle for which the friction keeps the 
vehicle from slipping down the bank, then we must return to the calculation, and reset the direction of 
the slip avoidance friction force. (We leave this as an exercise to the reader. But the great thing about 
Maple is that one just needs to change one line, re-execute the worksheet (!!!) and the answer 
appears instantaneously. )

While in the field, it likely more convenient for engineers to measure the radius curvature from the 
center of the curve to where the car is traveling on the elevated bank which is at a higher altitude. This 
means r is only the horizontal component of this measurement:  .  

Let us extract the relationship of r, divide by the cos of the angle, and assign it to a variable: R.
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Examples:
Now let's apply some examples. For pedagogical reasons, I prefer if students work exclusively with SI 
units and let Google, or a function, calculate the MKS value. 

I'll write a function to convert from kph to meters-per-second which is the SI unit for speed.

Example 1: speed is 30 [kph], with a coefficient of friction of 0.28. The bank is at a gradient of 6, which 

means . We know g is 9.8 [m / ].

So, the distance from the center up to where the vehicle travels around the curve is 20.5 [m].   For fun, 
we can compare the value with the value printed in the manual for the American Association of State 
Highway and Transportation Officials (AASHTO) for minimal road radius. The value they post is 20.8 
[m]. Slightly different, but not much.  Let's see if our difference becomes larger as we examine faster 
speeds.

Example 2: speed is 110 [kph] which is again banked with a gradient of 6, but with a coefficient of 
friction of 0.11

or 558 [m] which is comparable to AASHTO's value of 560.4 [m].  The relative difference is quite small
and is probably due to the engineers constructing the manual rounding intermediate steps in the process 
of calculating R. There is a very small relative percentage difference between our calculations and their 
value. It is:

or about an additional one-half percent.  Very little, and they are leaning toward the safer side of this 
calculation. Good move.

If you want to use Maple's units conversion, here is an example. Make sure you load the Units 
package/library.  Then use the Units palette. I do admit that it is cool that one can mix and match units in
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working problems. You can even change the units of the output to something other than default SI units. 
(My only beef about Maple Units is that I wish they had retained the double brackets format around the 
units. With the units letters such as "m", one can read it multiple ways: as the unit meter or as an 
unevaluated variable.)

Example 3: AASHTO includes the speed of 80 mph (Wow! Must be for highways in Montana.)  Using a
bank with a gradient of 6 and a minimal friction of 0.08, we calculate:

or about 3049 [ft]. The AASHTO manual states 3047.6 [ft], but says the "rounded radius (ft)" value is: 
3050. In short, and fortunately for all of us, their values appear to physically sound given the error that 
often occurs in measuring both the coefficient of friction and the gradient. 


