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In Maple it is easy to solve a differential equation. Below we show the basic syntax. With this you 
should be able to use the same basic commands to solve many second-order DEs. First we define the DE
and then we use dsolve to find the general solution.

I like to restart just in case Maple remembers something from another worksheet that might cause 
problems with what we're doing here.

Introduction to Solving ODES in Maple

General Solutions

We begin by dealing with ODEs with constant coefficients, what you learned to solve in AMATH
250/251. What is nice about these is that we have analytic solutions that we can compare our 
Maple solutions with.

Process Calculations Comments

To the right defines a 
nonhomogeneous equation.
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Then, to find the general 
solution we use the function 
dsolve. To get help with this 
you can type "?dsolve" or use 
the help bar above. The 
syntax is to tell Maple the 
equation we are solving and 
what variable we are solving 
for.

We see that the solution 
consists of three 
components. The first 
term is a solution to the 
homogeneous problem, 
with a constant _C2, the 
second is a second 
homogeneous solution, 
with constant _C1, and 
the third term is a 
particular solution. 
Since the two 
homogeneous solutions 
are linearly independent 
we know that we have a 
general solution. 

If we are feeling skeptical and
want to verify that this is in 
fact a solution we can use 
odetest.

0
It spits out 0, which 
means that when you 
plug it in you get zero, 
so it is infact a solution.

To see what happens when we
plug in something that is not a
solution try the following.

This is not zero so it is 
not a solution.

Initial Value Problems

Often we do not only want to find the general solution but we also want to impose conditions. In 
this course we focus mainly on solving Initial Value Problems.

Process Calculations Comments

To show how this can be done 
we first define the initial 
conditions that we want to 
impose.

Then we must simply include 
the ODE and ICs in a list and 
dsolve will compute the unique 
solution.

We can test whether the solution
satisfies the ODE and the ICs.

We get three zeros 
because our solution 
satisfies the ode and 
the two ics.



Boundary Value Problems

Above we solved an Initial Value Problem. We can also use Maple to solve Boundary Value 
Problems. Below we solve the same equation but now imposing conditions at two different 
locations. 

Process Calculations Comments

First we define the boundary 
conditions. (1.3.1)

To solve the BVP we use the 
same syntax as before. (1.3.2)

We can test whether the solution
is in fact a solution by using 
odetest.

(1.3.3) As expected, we do in
fact have a solution.

Symbolic versus Numerical Solutions

Special DEs and Special Functions

As mentioned in class, there are famous differential equations that we will consider, such as Bessel's 
and Airy's. These solutions cannot be written in terms of simple functions and, because of their 
importance, people have defined their solutions to be functions, referred to as special functions. This 
part of the worksheet will find solutions to some DEs and this allows us to look at what these special 
functions look like.



(3.1.1)(3.1.1)

(3.1.3)(3.1.3)

(3.1.2)(3.1.2)

Airy's Equation

Process Calculations Comments

Airy's equation is defined to 
the right. 

We solve this to find the 
general solution to this 
homogenenous equation.

Note that there are 
two solutions that 
appear, AiryAi and 
AiryBi. To learn 
more about them we 
can use the help 
command 
"?AiryAi"

To see what these solutions 
look like we plot them side by
side in the figure to the right 
using plot.

I included a legend 
so that we can tell 
which is which. If we
don't specify the 
bounds on y then we 
will get huge axes 
because AiryBi 
(often referred to as 
Bi) gets very large, 
very quickly. Later in
the course we will 
solve this equation 
using power series 
and that will help to 
understand the 
behaviour of the 
solutions.

For now we look at the first 
few terms in AiryAi to see 
what it looks like. To the right
we look at the cubic terms 
only.

This involves the 
Gamma funciton. To 
learn what that is we 
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can again ask for 
help using "?
GAMMA". It is the 
extension of the 
factorial to the real 

= (n-1)!, if n is an 
integer.

Bessel's Equation of order n

Next, we look at solutions to Bessel's equation that we introduced in class.

Process Calculations Comments

Again, we will first define our 
equation.

We solve using dsolve The two linearly 
independent 
solutions can be 
written as BesselJ(n,
t) and BesselY(n,t).
BesselJ(n,t) is the 
Bessel Function of 
order n of the first 
kind. BesselY(n,t) is
the Bessel function 
of order n of the 
second kind. We 
can ask for help 
using "?BesselJ" if 
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we need.

We can look at the series 
representation of a couple of 
them as we did before. Notice that for each 

integer in the 
equation, n, we get 
distinct solutions. 
How do they 
compare and how do
they differ?

As an easy way to figure this 
out we can plot them. This 
shows us the qualitative 
behaviours. Later, we will find 
power series solutions that will 
shed more light on the solution.

Notice that J(0,t)=1 
at t=0 and J(1.t) = 0 
at t=0. It turns out 
that J(n,t)=0 for all n 
bigger than or equal 
to n. The solutions 
seem to oscillate and
decay. If you want to
see this for larger 
values of y then you 
simply need to 
change the upper 
boud on t in the 
plotting command.

The functions 
BesselY(n,t) don't 
appear for negative 
values of t. Also, we 
cannot see where 
they intersect the y 
axis. This is beause 
these functions are 
actually unbounded 
at t=0. Another 
property that we will



(3.3.6)(3.3.6)

(3.3.1)(3.3.1)

(3.3.2)(3.3.2)

(3.2.1)(3.2.1)

(3.3.4)(3.3.4)

(3.2.4)(3.2.4)

(3.3.3)(3.3.3)

(3.3.5)(3.3.5)

(3.2.2)(3.2.2)

(3.2.3)(3.2.3)

see later on.

Modified Bessel's Equation of order n

Next we look at solutions of the modified Bessel's equation of order n. 

 
Process Calculations Comments

This is almost exactly the 
same equation as we saw 
previously but in front of 
the last term we have a -1 
instead of a +1. Such a 
minor difference produces 
very different solutions. 

As usual we solve this with 
dsolve.

The two solutions 
are:
BesselI(n,t), the n-
th order Modified
Bessel function of 
the first kind.
BesselK(n,t), the 
n-th order 
Modified Bessel 
function of the 
second kind.

We plot these solutions to 
see their behaviours.
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Finally we will look at 
series representations of a 
few of them.

Notice that we see 
in the last two 
exapnsions that 
there are ln(t) and 
1/t, both of which 
are singular at t=0. 
This is why these 
functions blow up 
at the origin.
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Power Series Solutions to DEs

Maple also allows us to find series solutions with only including a finite number of terms in the 
power series solution. 

Process Calculations Comments

To illustrate this let's 
start with a simple 
equation whose 
solution we can 
compute easily.

We use the same 
syntax as before but 
now we specify that 
we want a series 
solution. The default 
is 6 terms but we can
change that to 
whatever we would 
like.

If we want to change 
the order we must 
specify Order before 
we do the above. Observe that 

the first six 
non-zero 
terms are 
exactly the 
same.

It should be clear that
this is getting closer 
and closer to the 
series expansion of 
the exponential 
function. 

Now we can apply to
the Airy function to 
see how to solve for 
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the first few 
components of the 
series solution.

First we pick the 
initial conditions to 
be something simple 
so we can obtain the 
series expansions for 
that particular 
function.

8

at 10 digits

We can compare this 
with the complete 
solution.

We can compare 
these two solutions 
in a plot. Here I 
choose to define the 
plots seperately and 
then display them 
together. 

We see the 
solid red and 
dashed blue 
are almost 
identical.
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It is also easy to plot 
their difference.
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