Calculus I
Lesson 18: Inverse Functions
Example 1 For each of the following functions, determine whether the
function is one-to-one. If yes, plot the function and its
inverse on the same axes.
> restart; with(plots):
Warning, the name changecoords has been redefined
1a) .
> f1:= x -> 2*x + 1;
> g1:= x -> .5 * ( x - 1);
> a1:= plot(f1(x), x = -10..10, thickness=2, color = black):
> b1:= plot(g1(x), x = -10..10, thickness=2, color = red):
> c1:= plot(x, x = -10..10, thickness=2, color = blue):
> d1:= textplot([2,10,`f1`], thickness=2, color = magenta):
> e1:= textplot([7,10,`y=x`], thickness=2, color = magenta):
> h1:= textplot([3,-3,`g1`], thickness=2, color = magenta):
> display({a1,b1,c1,d1,e1,h1});
1b)
> f2:= x -> x^3;
> g2:= x -> surd(x,3);
> a2:=plot(f2(x), x = -1.5..1.5, thickness=2, color = black):
> b2:= plot(g2(x), x = -1.5..1.5, thickness=2, color = red):
> c2:= plot(x, x = -1.5..1.5, thickness=2, color = blue):
> d2:= textplot([1.1,.5,`f2`], thickness=2, color = magenta):
> e2:= textplot([1.5,2,`y=x`], thickness=2, color = magenta):
> h2:= textplot([0.3,1.5,`g2`], thickness=2, color = magenta):
> display({a2,b2,c2,d2,e2,h2});
1 c) , x >= 2
> f3:= x -> sqrt(x - 2);
> g3:= x -> x^2 + 2;
> a3:= plot(f3(x), x = 2..4, thickness=2, color = black):
> b3:= plot(g3(x), x = 0..4, thickness=2, color = red):
> c3:= plot(x, x = 0..4, thickness=2, color = blue):
> d3:= plot([2,t,t = 0..6], thickness=2, color = brown):
> e3:= textplot([3,14,`f3`], thickness=2, color = magenta):
> h3:= textplot([3,4.3,`y=x`], thickness=2, color =magenta):
> i3:= textplot([3.5,-1.5,`g3`], thickness=2, color = magenta):
> display({a3,b3,c3,d3,e3,h3,i3});
1d) , x in [0,3]
> f4:= x -> 9 - x^2;
> g4:= x -> sqrt(9-x);
> a4:= plot(f4(x), x = -3..3, thickness=2, color = black):
> b4:= plot(g4(x), x = 0..9, thickness=2, color = red):
> c4:= plot(x, x = 0..9, thickness=2, color = blue):
> d4:= textplot([2.3,7,`f4`], thickness=2, color = magenta):
> e4:= textplot([6,5,`y=x`], thickness=2, color = magenta):
> h4:= textplot([5,1.5,`g4`], thickness=2, color = magenta):
> display({a4,b4,c4,d4,e4,h4});
1e) , x > 1
> f5:= x -> 1/ (x-1);
> g5:= x -> (1 + x) / x;
> a5:= plot(f5(x), x = 2..30, thickness=2, color = black):
> b5:= plot(g5(x), x = .03.. 1, thickness=2, color = red):
> c5:= plot( x, x = 0..10, thickness=2, color = blue):
> d5:= textplot([6,2,`f5`], thickness=2, color = magenta):
> e5:= textplot([4,6,`y=x`], thickness=2, color = magenta):
> h5:= textplot([2,10,`g5`], thickness=2, color = magenta):
> display({a5,b5,c5,d5,e5,h5});
Example 2 Plot y = sin(x) for x in [ - /2, /2] and also plot the inverse function.
> t1:= x -> sin(x);
> it1:= x -> arcsin(x);
> u1:= plot(t1(x), x = -Pi/2..Pi/2, thickness=2, color = black):
> u2:= plot(it1(x), x = -1..1, thickness=2, color = red):
> u3:= plot(x, x = -Pi/2..Pi/2, thickness=2, color = blue):
> u4:= textplot([1,.7,`sin(x)`], thickness=2, color = magenta):
> u5:= textplot([1.3,1.6,`y = x`], thickness=2, color = magenta):
> u6:= textplot([.7,1.4,`arcsin(x)`], thickness=2, color = magenta):
> display({u1,u2,u3,u4,u5,u6});
Example 3 Plot y = cos(x) for x in [ 0, ]. Also plot the inverse function.
> t2:= x -> cos(x);
> it2:= x -> arccos(x);
> v1:= plot(t2(x), x = 0..Pi, thickness=2, color = black):
> v2:= plot(it2(x), x = -1..1, thickness=2, color = red):
> v3:= plot(x, x = 0..Pi, thickness=2, color = blue):
> v4:= textplot([1.6,.6,`cos(x)`], thickness=2, color = magenta):
> v5:= textplot([2,1.6,`y=x`], thickness=2, color = magenta):
> v6:= textplot([.7,1.7,`arcos(x)`], thickness=2, color = magenta):
> display({v1,v2,v3,v4,v5,v6});
Example 4 Plot f(x) = tan(x) for x in ( - /2, /2). Also plot the inverse function.
> t3:= x -> tan(x);
> it3:= x -> arctan(x);
> w1:= plot(t3(x), x = -Pi/2 + 0.1.. Pi/2 - 0.1, thickness=2, color = black):
> w2:= plot(it3(x), x = -10..10, thickness=2, color = red):
> w3:= plot(x, x = -10..10, thickness=2, color = blue):
> w4:= textplot([5.5,2.5,`arctan(x)`], thickness=2, color = magenta):
> w5:= textplot([8.5,7,`y=x`], thickness=2, color = magenta):
> w6:= textplot([3,8,`tan(x)`], thickness=2, color = magenta):
> display({w1,w2,w3,w4,w5,w6});
Example 4 Plot f(x) = csc(x) for x in (- /2,0) and (0, /2) . Also plot the inverse function.
> t4:= x -> csc(x);
> it4:= x -> arccsc(x);
> z1:= plot(csc(x), x = -Pi/2 ..- 0.1, thickness=2, color = black):
> z2:= plot(csc(x), x = 0.1..Pi/2, thickness=2, color = black):
> z3:= plot(it4(x), x = 1..10, thickness=2, color = red):
> z4:= plot(it4(x), x = -10..-1, thickness=2, color = red):
> z5:= plot(x, x= -10..10, thickness=2, color = blue):
> z6:= textplot([1.8,5,`csc(x)`], thickness=2, color = magenta):
> z7:= textplot([5,4,`y=x`], thickness=2, color = magenta):
> z8:= textplot([-6,-2,`arccsc(x)`], thickness=2, color = magenta):
> display({z1,z2,z3,z4,z5,z6,z7,z8});