Application Center - Maplesoft

App Preview:

Price Elasticity of Demand

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

 

 

 

 

 

       Image 

 

Price Elasticity of Demand 

 

 

The following was implemented in Maple by Marcus Davidsson (2009)

davidsson_marcus@hotmail.com
 

 

 

 

 

 



We basically have two different types of demand function:
 



1) A constant price elasticity demand function           2) A non-constant price elasticity demand function 

 

 

 

 

 

We can plot the two versions as follows: 

 

 

 

 

Demand Curve with Constant
Price Elasticity of Demand (Iso-Elastic)
 

Demand Curve with Non Constant
Price Elasticity of Demand  (Linear Demand Curve)
 










 

Plot_2d  
 

 

 

 

 










 

Plot_2d  
 

 

 

 

 

 

 

Now the price elasticity of demand for the two demand functions are defined as:  

 

 

 

 

 

Price Elasticity of Demand  

Demand Curve with Constant Price Elasticity of Demand (Iso-Elastic)  

Demand Curve with Non Constant Price Elasticity of Demand (Linear Demand Curve) 

 

 

 

Formula 

 

 




 

 

 

Typesetting:-mprintslash([`assign`(Q, `*`(a, `*`(`^`(P, epsilon))))], [`*`(a, `*`(`^`(P, epsilon)))])
Elasticity = epsilon (1)
 

 

 




 

 

 

Typesetting:-mprintslash([`assign`(Q, `+`(a, `*`(b, `*`(P))))], [`+`(a, `*`(b, `*`(P)))])
Elasticity = `/`(`*`(b, `*`(P)), `*`(`+`(a, `*`(b, `*`(P))))) (2)
 

 

 

Interpretation 

 

 

If we increase price with 1% then demand will decrease with %  

 

 

If we increase price with 1% then demand will decrease with %  

 

 

 

 

 

We now confirm the above reasoning by some simulations: 

 

 

 

 

We start with the demand curve with constant price elasticity of demand 

 

 

































 

 

 

 

 

`Price Last Period` = 92.51775187
`Demand Last Period` = 1.080873648

Plot_2d Plot_2d

 
 

 

 

 

 

 

 

 

We can now illustrate the demand curve with non-constant price elasticity of demand 

 

 

 

 

































 

 

 

 

 

`Price Last Period` = 92.51775187
`Demand Last Period` = 7.48224813

Plot_2d Plot_2d

 
 

 

 

 

 

 

We can also show that the percentage change on quantity demanded due to a 1% change in price is indeed equal to the 

 

price elasticity of demand as follows: 

 

 

 
































 

 

 

 

 

`Price Last Period` = 92.51775187
`Demand Last Period` = 7.48224813

Plot_2d Plot_2d

 
 

 

 

 

 

 

 

We can further illustrate the demand curve with constant price elasticity as follows: 

 

 

 

 

 

Demand Curve with Constant Price Elasticity of Demand (Iso-Elastic)  

 

CodeEditor-Buttonrestart:  

 

 

           
          Elasticity Parameter ε  =  Embedded component
 

 

Embedded component 

 

 

Embedded component 

 

 

 

 

   
 

 

 

We can further illustrate the demand curve with non constant price elasticity as follows: 

 

 

 

 

                                            

Demand Curve with Non Constant Price Elasticity of Demand (Linear Demand Curve)     

 

CodeEditor-Buttonrestart:  

      

         
  Slope Parameter b  =  Embedded component 

 

 

        Embedded component 

 

      

 

Embedded component