Multi-Objective Design Optimization of a Hybrid Electric Vehicle

Christine Schwarz, ISKO engineers
Dr. Johannes Friebe, MapleSoft
Dr. Sam Dao, MapleSoft

Optimus World Conference, Paris
Multi-Objective Design Optimization of a Hybrid Electric Vehicle

1. Setup and HEV Model
2. Automation and Process Integration
3. Selection of Parameters
4. Optimization Strategy
5. Conclusion and Results
Process Integration and Optimization of a Mathematics-based HEV

1. Setup and HEV Model
2. Automation and Process Integration
3. Selection of Parameters
4. Optimization Strategy
5. Conclusion and Results
1. HEV Challenges

- Many new components
- Less experience
- More interaction of more components
- New thermal effects
- More need for sharing

→ More need for optimization
1. Hybrid and E-Vehicle Components
1. Variable Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description [unit]</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinSoCThreshold</td>
<td>Minimum SOC Threshold</td>
<td>0.3 – 0.6</td>
</tr>
<tr>
<td>ncell</td>
<td>Number of battery cells</td>
<td>100 – 200</td>
</tr>
<tr>
<td>Vmanifold</td>
<td>Engine manifold volume [m3]</td>
<td>0.003 – 0.005</td>
</tr>
<tr>
<td>Bore</td>
<td>Engine bore [m]</td>
<td>0.0855 – 0.1</td>
</tr>
<tr>
<td>Stroke</td>
<td>Engine stroke [m]</td>
<td>0.0814 – 0.19</td>
</tr>
<tr>
<td>Apos</td>
<td>Area of battery pos.electrode [cm2]</td>
<td>100 – 500</td>
</tr>
<tr>
<td>Aneg</td>
<td>Area of battery neg.electrode [cm2]</td>
<td>100 – 500</td>
</tr>
<tr>
<td>apos</td>
<td>Specific surface of Apos [cm2/cm3]</td>
<td>3000 – 5000</td>
</tr>
<tr>
<td>aneg</td>
<td>Specific surface of Aneg [cm2/cm3]</td>
<td>2000 – 4000</td>
</tr>
<tr>
<td>Va</td>
<td>Nominal voltage of e-motor [V]</td>
<td>400 – 1000</td>
</tr>
<tr>
<td>Ia</td>
<td>Nominal current of e-motor [mA]</td>
<td>50 – 100</td>
</tr>
<tr>
<td>Vas</td>
<td>Phase voltage of e-motor [V]</td>
<td>50 – 150</td>
</tr>
<tr>
<td>Ias</td>
<td>Phase current of e-motor [mA]</td>
<td>50 – 150</td>
</tr>
</tbody>
</table>
1. Setup and HEV Model
1. Setup and HEV Model

Goal: the optimization goal is to minimize fuel consumption, while simultaneously keeping the maximum torque at a maximum.

- **Two objective functions have to be considered**
- **Multi-objective optimization strategies have to be applied**
1. Setup and HEV Model

Constraints: Two target requirements have to be considered during the optimization process

- Maximum temperature < 315 K
- Battery current < 500 A

Violation of these constraints leads to a non-feasible design and it will be marked as a failed experiment
1. Output Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Output parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power loss</td>
<td></td>
</tr>
</tbody>
</table>

Objective

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel consumption</td>
<td>Minimization</td>
</tr>
<tr>
<td>Engine torque</td>
<td>Maximization</td>
</tr>
</tbody>
</table>

Constraint

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery temperature</td>
<td>Smaller than 315 K, because higher values can damage the durability of the battery (< 315)</td>
</tr>
<tr>
<td>Battery current</td>
<td>Smaller than 500 A, because higher values can damage the durability of the battery (< 500)</td>
</tr>
</tbody>
</table>
Process Integration and Optimization of a Mathematics-based HEV

1. Setup and HEV Model
2. Automation and Process Integration
3. Selection of Parameters
4. Optimization Strategy
5. Conclusion and Results
2. Automation and Process Integration

- **Integration of external methods**
 - HPC and Queuing Systems
 - Python API

METHOD-LEVEL

WORKFLOW-LEVEL

INTERFACES

Integration of software-tools
2. Automation and Process Integration

![Diagram of Process Integration for Optimization](image)

- **MapleSim**
- **C / C++**
- **Modelica**
- **Maple connector**

Optimus

ISKO engineers

Optimus 2014 World Conference
2. Automation and Process Integration

Workflow in OPTIMUS

- Design Variables
 - MinSoCThreshold
 - ncell
 - Stroke
 - Apos
 - Va
 - Vas
 - Bore

- Modified Input for MapleSim
- Vector Output
- Scalar Output

- Starting MapleSim and Extraction of Results
 - series_hev.mpl
 - series_hev_out.mpl

- Vector Output
 - vecthrmq
 - vecbcurr
 - vectemp
 - max_thrmq
 - max_bcurr
 - max_temp

- Scalar Output
 - objfuel
 - objtrackng
 - objtracng
 - objbcurr
 - objtemp
 - objloss

- ISKO engineers
Process Integration and Optimization of a Mathematics-based HEV

1. Setup and HEV Model
2. Automation and Process Integration
3. Selection of Parameters
4. Optimization Strategy
5. Conclusion and Results
3. Selection of Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description [unit]</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinSoCThreshold</td>
<td>Minimum State of Charge Threshold</td>
<td>0.3 – 0.6</td>
</tr>
<tr>
<td>ncell</td>
<td>Number of battery cells</td>
<td>100 – 200</td>
</tr>
<tr>
<td>Vmanifold</td>
<td>Engine manifold volume [m³]</td>
<td>0.003 – 0.005</td>
</tr>
<tr>
<td>Bore</td>
<td>Engine bore [m]</td>
<td>0.0855 – 0.1</td>
</tr>
<tr>
<td>Stroke</td>
<td>Engine stroke [m]</td>
<td>0.0814 – 0.19</td>
</tr>
<tr>
<td>Apos</td>
<td>Area of battery positive electrode [cm²]</td>
<td>100 – 500</td>
</tr>
<tr>
<td>Aneg</td>
<td>Area of battery negative electrode [cm²]</td>
<td>100 – 500</td>
</tr>
<tr>
<td>apos</td>
<td>Specific surface area of battery positive electrode [cm²/cm³]</td>
<td>3000 – 5000</td>
</tr>
<tr>
<td>aneg</td>
<td>Specific surface area of battery negative electrode [cm²/cm³]</td>
<td>2000 – 4000</td>
</tr>
<tr>
<td>Va</td>
<td>Nominal voltage of electric motor [V]</td>
<td>400 – 1000</td>
</tr>
<tr>
<td>Ia</td>
<td>Nominal current of electric motor [V]</td>
<td>50 – 100</td>
</tr>
<tr>
<td>Vas</td>
<td>Nominal voltage of electric motor [V]</td>
<td>50 – 150</td>
</tr>
<tr>
<td>Ias</td>
<td>Nominal current of electric motor [V]</td>
<td>50 – 150</td>
</tr>
</tbody>
</table>
3. Selection of Parameters

Linear Correlation Factors

<table>
<thead>
<tr>
<th>Pearson (Spearman)</th>
<th>objfuel</th>
<th>objtracking</th>
<th>objploss</th>
<th>objcurr</th>
<th>objtemp</th>
<th>objetorque</th>
</tr>
</thead>
<tbody>
<tr>
<td>objfuel</td>
<td>0.377 (0.429)</td>
<td>-0.087 (-0.239)</td>
<td>0.012 (0.006)</td>
<td>0.023 (0.002)</td>
<td>0.029 (0.011)</td>
<td>-0.531 (-0.611)</td>
</tr>
<tr>
<td>objtracking</td>
<td>-0.120 (-0.074)</td>
<td>-0.090 (-0.037)</td>
<td>0.004 (0.004)</td>
<td>0.009 (0.022)</td>
<td>-0.065 (-0.025)</td>
<td>-0.076 (-0.049)</td>
</tr>
<tr>
<td>objploss</td>
<td>0.027 (0.087)</td>
<td>0.241 (0.264)</td>
<td>-0.010 (-0.010)</td>
<td>0.005 (0.018)</td>
<td>-0.028 (-0.069)</td>
<td>-0.087 (-0.145)</td>
</tr>
<tr>
<td>objcurr</td>
<td>-0.137 (-0.165)</td>
<td>-0.252 (-0.245)</td>
<td>-0.027 (-0.035)</td>
<td>0.156 (0.164)</td>
<td>0.482 (0.563)</td>
<td>0.126 (0.174)</td>
</tr>
<tr>
<td>objtemp</td>
<td>0.011 (0.070)</td>
<td>0.273 (0.273)</td>
<td>-0.017 (-0.003)</td>
<td>-0.019 (-0.038)</td>
<td>-0.065 (-0.082)</td>
<td>0.019 (0.046)</td>
</tr>
<tr>
<td>objetorque</td>
<td>-0.117 (-0.124)</td>
<td>-0.332 (-0.226)</td>
<td>-0.025 (-0.027)</td>
<td>0.173 (0.159)</td>
<td>0.553 (0.555)</td>
<td>0.153 (0.156)</td>
</tr>
</tbody>
</table>

Red boxes indicate correlation factors ≥ 0.3.
Process Integration and Optimization of a Mathematics-based HEV

1. Setup and HEV Model
2. Automation and Process Integration
3. Selection of Parameters
4. Optimization Strategy
5. Conclusion and Results
4. Optimization Strategy

1. Decide for an optimization strategy

2. Study: Investigate the behavior of the system and the Pareto points

3. Study: Investigate the influence of swarm size on mPSO
4. Optimization Strategy

STEP 1 Design of Experiments
Exploration of the design space
Latin Hypercube Sampling with n experiments

STEP 2 Response Surface Model
Describing the system behavior using mathematical models (Kriging)

STEP 3 Multiobjective Optimization
Determine an optimal parameter combination on the model using evolution strategies (NSEA+/mPSO algorithm)
4. Optimization Strategy

1. Decide for an optimization strategy

2. Study: Investigate the behavior of the system and the Pareto points

3. Study: Investigate the influence of swarm size on mPSO
4. Optimization Strategy

All experiments during the optimization process

Algorithm: mPSO

Nominal experiment

2,200 evaluations
4. Optimization Strategy

Algorithm: mPSO

Nominal experiment

All feasible experiments during the optimization process

2,200 evaluations
4. Optimization Strategy

Algorithm: mPSO

All feasible experiments during the optimization process

Nominal experiment

9.500 evaluations
4. Optimization Strategy

All experiments during the optimization process

All feasible experiments during the optimization process

Algorithm: NSEA+

Nominal experiment

10,000 evaluations
4. Optimization Strategy

Algorithm: NSEA+

All feasible experiments during the optimization process

Nominal experiment

50,000 evaluations
4. Optimization Strategy

Algorithm: mPSO

- Optimum for max torque
- Optimum for fuel consumption
- Compromise solutions
- Nominal experiment
- 2,200 evaluations
- Pareto Points

max_torque vs. obj_fuel
4. Optimization Strategy

- NSEA+ (50,000 exp.)
- NSEA+ (10,000 exp.)
- mPSO (2,200 exp.)
- mPSO (9,500 exp.)
- Pareto Front
- Nominal experiment
4. Optimization Strategy

1. Decide for an optimization strategy

2. Study: Investigate the behavior of the system and the Pareto points

3. Study: Investigate the influence of swarm size on mPSO
4. Optimization Strategy

Pareto Front

Swarm: 50 → exp: 2500
4. Optimization Strategy

Best objfuel value

Swarm: 5
High values in the first iteration

Swarm: 10

Swarm: 15
Already good values in the first iteration

Swarm: 20

Swarm: 25

Swarm: 30

Swarm: 35

Swarm: 40

Swarm: 50

Already good values in the first iteration
4. Optimization Strategy

Best max_torque value

Swarm: 5

Swarm: 10

Swarm: 20

Swarm: 25

Swarm: 30

Swarm: 35

Swarm: 40

Swarm: 50

Small swarm can lead to local behavior

High values in the last iteration
4. Optimization Strategy

valid points

Swarm: 5

Swarm: 10

Swarm: 15

Swarm: 20

Swarm: 25

Swarm: 30

Swarm: 35

Swarm: 40

Swarm: 50

Lower number of valid points in the last iteration

High number of valid points in the last iteration
4. Optimization Strategy

better points (compared to nominal)

Swarm: 5

Swarm: 10

Swarm: 15

Swarm: 20

Swarm: 25

Swarm: 30

Swarm: 35

Swarm: 40

Swarm: 50

Increasing number of better points with increasing iteration number (>10)

Many better points in the last iteration
4. Optimization Strategy

Pareto points

Swarm: 5

Swarm: 10

Swarm: 15

Swarm: 20

Swarm: 25

Swarm: 30

Swarm: 35

Swarm: 40

Swarm: 50

Low total number of Pareto points found BUT: High number compared to number of evaluations

High total number of Pareto points found BUT: Low number compared to number of evaluations
Process Integration and Optimization of a Mathematics-based HEV

1. Setup and HEV Model
2. Automation and Process Integration
3. Selection of Parameters
4. Optimization Strategy
5. Conclusion and Results
5. Conclusion and Results

- Optimus offers the user a lot of flexibility by allowing the selection of many options for the algorithm.
 - For inexperienced users good default values are predefined.
 - Advanced users have the possibility to change the settings to improve the optimization behavior.
5. Conclusion and Results

• In case of expensive simulations or a small amount of time, the user can afford less evaluations than suggested

→ The user can decrease the swarm size and therefore perform more iterations
5. Conclusion and Results

✓ Easy-to-use procedure to set up and handle a complex vehicle model in MapleSim

✓ Efficient automation possibility using OPTIMUS

✓ Application of advanced optimization algorithms without additional effort
QUESTIONS ? ? ?

Thank you for your attention

Dr. Johannes Friebe, MapleSoft
Christine Schwarz, ISKO engineers
Dr. Sam Dao, MapleSoft