Air Gap DC - MapleSim Help

Air Gap DC

Linear air gap model of a DC machine

 Description The linear model of the air gap of a DC machine, models the air gap without saturation effects. Induced excitation voltage is calculated from $\mathrm{der}\left(\mathrm{flux}\right)$, where $\mathrm{flux}$ is the excitation inductance multiplied by the excitation current. The induced armature voltage is found by multiplying $\mathrm{flux}$ by angular velocity.

Connections

 Name Description ${\mathrm{flange}}_{}$ Flange $\mathrm{support}$ Support at which the reaction torque is acting ${\mathrm{pin}}_{\mathrm{ap}}$ Positive armature pin ${\mathrm{pin}}_{\mathrm{ep}}$ Positive pin ${\mathrm{pin}}_{\mathrm{an}}$ Negative armature pin ${\mathrm{pin}}_{\mathrm{en}}$ Negative pin

Constants

 Symbol Value Units Description $m$ $3$ - Number of phases

Parameters

 Symbol Default Units Description Modelica ID - - $\frac{#\mathrm{armature turns}}{#\mathrm{excitation winding turns}}$ turnsRatio $L{}_{e}$ - $H$ Excitation inductance Le

Initial Conditions

 Symbol Units Description Modelica ID ${\mathrm{ω}}_{0}$ $\frac{\mathrm{rad}}{s}$ Angular velocity omega(0) ${\mathrm{vei}}_{0}$ $V$ Voltage drop across field excitation inductance vei(0) ${\mathrm{ie}}_{0}$ $A$ Excitation current ie(0) ${\mathrm{ψ}}_{\mathrm{e0}}$ $\mathrm{Wb}$ Excitation flux psi_e(0) ${\mathrm{vai}}_{0}$ $V$ Induced armature voltage vai(0) ${\mathrm{ia}}_{0}$ $A$ Armature current ia(0) ${\mathrm{τ}}_{0}$ $N\cdot m$ The electromagnetic torque tau(0)