tests whether a given list of infinitesimals represents a symmetry of a given PDE system. - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : PDEtools : Symmetries : PDEtools/SymmetryTest

PDEtools[SymmetryTest] - tests whether a given list of infinitesimals represents a symmetry of a given PDE system.

Calling Sequence

SymmetryTest(S, PDESYS, DepVars)

Parameters

S

-

a list with the infinitesimals of a symmetry generator or the corresponding infinitesimal generator operator

PDESYS

-

a PDE or a set or list of them; it can include ODEs and not differential equations

DepVars

-

optional - may be required; a function or a list of them indicating the dependent variables of the problem

Description

• 

SymmetryTest tests whether a symmetry, given as a list of infinitesimals S or as the corresponding infinitesimal generator differential operator, is a symmetry of a given PDE system PDESYS; if so, S satisfies the determining PDE for PDESYS.

• 

If DepVars is not specified, SymmetryTest will consider all the differentiated unknown functions in PDESYS as unknown of the problems.

Examples

Consider the wave equation in four dimensions to avoid redundant typing on input and on the display use diff_table and declare

withPDEtools:

U:=diff_tableux,y,z,t:

declareU[]

ux,y,z,twill now be displayed asu

(1)

pde1:=Ux,x+Uy,y+Uz,zUt,t=0

pde1:=ux,x+uy,y+uz,zut,t=0

(2)

Compute the infinitesimals of point symmetry transformations leaving invariant pde[1] and test for correctness the first list

declare_ξ,_ηx,y,z,t,u

_ξx,y,z,t,uwill now be displayed as_ξ

_ηx,y,z,t,uwill now be displayed as_η

(3)

S:=Infinitesimalspde1

S:=_ξx=0,_ξy=1,_ξz=0,_ξt=0,_ηu=0,_ξx=0,_ξy=0,_ξz=1,_ξt=0,_ηu=0,_ξx=0,_ξy=0,_ξz=0,_ξt=1,_ηu=0,_ξx=1,_ξy=0,_ξz=0,_ξt=0,_ηu=0,_ξx=0,_ξy=t,_ξz=0,_ξt=y,_ηu=0,_ξx=0,_ξy=0,_ξz=t,_ξt=z,_ηu=0,_ξx=t,_ξy=0,_ξz=0,_ξt=x,_ηu=0,_ξx=x,_ξy=y,_ξz=z,_ξt=t,_ηu=0,_ξx=0,_ξy=0,_ξz=0,_ξt=0,_ηu=u,_ξx=0,_ξy=z,_ξz=y,_ξt=0,_ηu=0,_ξx=z,_ξy=0,_ξz=x,_ξt=0,_ηu=0,_ξx=y,_ξy=x,_ξz=0,_ξt=0,_ηu=0,_ξx=xz,_ξy=yz,_ξz=12z2+12t212x212y2,_ξt=tz,_ηu=uz,_ξx=yx,_ξy=12y2+12t212x212z2,_ξz=yz,_ξt=yt,_ηu=uy,_ξx=xt,_ξy=yt,_ξz=tz,_ξt=12t2+12x2+12y2+12z2,_ηu=ut,_ξx=12x212t2+12y2+12z2,_ξy=yx,_ξz=xz,_ξt=xt,_ηu=ux

(4)

SymmetryTestS1,pde1

0

(5)

Test all the lists in one step

mapSymmetryTest,S,pde1

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

(6)

SymmetryTest can also test dynamical symmetries, that is, symmetries where the infinitesimals depend on derivatives of the unknown functions of the problem. Consider for instance the sine-Gordon equation

declareux,y

ux,ywill now be displayed asu

(7)

SGE:=2yxux,y=sinux,y

SGE:=ux,y=sinu

(8)

The following list of infinitesimals represent a symmetry of SGE

S:=_ξ1=0,_ξ2=0,_η1=u1,1,1+1u132

S:=_ξ1=0,_ξ2=0,_η1=u1,1,1+12u13

(9)

FromJetS,ux,y

_ξ1=0,_ξ2=0,_η1=ux,x,x+12ux3

(10)

SymmetryTestS,SGE

0

(11)

See Also

declare, DeterminingPDE, diff_table, Infinitesimals, PDEtools, SymmetryTransformation


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam