Shuttle Valve $—$ Shuttle valve with internal resistance and volumes at the ports

The Shuttle Valve component describes a shuttle valve. The flow to port T depends on the pressures at ports A and B:

 ${p}_{A}$ $\gg$ ${p}_{B}$ ${q}_{A}$ from A to T like an orifice (parameters: $d$, ${k}_{1}$, ${k}_{2}$) ${q}_{B}$ from B to T = 0 leakage from A to B (laminar resistance, parameter ${G}_{\mathrm{leak}}$) ${p}_{A}$ $\ll$ ${p}_{B}$ ${q}_{B}$ from B to T like an orifice (parameters: $d$, ${k}_{1}$, ${k}_{2}$) ${q}_{A}$ from A to T = 0 leakage from B to A (laminar resistance, parameter ${G}_{\mathrm{leak}}$) ${p}_{A}$ $\approx$ ${p}_{B}$ Characteristic curve of a valve with underlap; that is, for ${p}_{A}={p}_{B}$ there is flow from A to T and from B to T. The flow area is 25% of the maximum area. This transition is needed to avoid problems with the integration routine.

See Shuttle Valve No States for more information. The mass and flow forces are not included. Use the modifier(s)

VolumeA(port_A(p(start=1e5,fixed=true)))

and/or

VolumeB(port_A(p(start=1e5,fixed=true)))

and/or

VolumeT(port_A(p(start=1e5,fixed=true)))

to set the initial condition(s) for the pressure of the lumped volume(s) $\left[\mathrm{Pa}\right]$.

Related Components

 Name Description Shuttle valve with internal resistance

Variables

 Name Value Units Description Modelica ID ${V}_{A}$ VolumeA ${V}_{B}$ VolumeB ${V}_{T}$ VolumeT ${p}_{A\left(\mathrm{summary}\right)}$ ${p}_{A}$ $\mathrm{Pa}$ Pressure at port A summary_pA ${p}_{B\left(\mathrm{summary}\right)}$ ${p}_{B}$ $\mathrm{Pa}$ Pressure at port P summary_pB ${p}_{T\left(\mathrm{summary}\right)}$ ${p}_{T}$ $\mathrm{Pa}$ Pressure at port T summary_pT ${\mathrm{Δp}}_{\mathrm{AT}\left(\mathrm{summary}\right)}$ ${p}_{A}-{p}_{T}$ $\mathrm{Pa}$ Pressure drop summary_dp_AT ${\mathrm{Δp}}_{\mathrm{BT}\left(\mathrm{summary}\right)}$ ${p}_{B}-{p}_{T}$ $\mathrm{Pa}$ Pressure drop summary_dp_BT $\mathrm{shuttleValveNoStates}$ shuttleValveNoStates ${q}_{\mathrm{AT}\left(\mathrm{summary}\right)}$ [1] $\frac{{m}^{3}}{s}$ Flow rate flowing port_P to port_A summary_qAT ${q}_{\mathrm{BT}\left(\mathrm{summary}\right)}$ [2] $\frac{{m}^{3}}{s}$ Flow rate flowing port_P to port_B summary_qBT

[1] $\mathrm{shuttleValveNoStates.MOAT.q}$

[2] $\mathrm{shuttleValveNoStates.MOBT.q}$

Connections

 Name Description Modelica ID ${\mathrm{port}}_{A}$ port_A: oil mostly enters the element port_A ${\mathrm{port}}_{B}$ Hydraulic port where oil enters or leaves the element port_B ${\mathrm{port}}_{T}$ Hydraulic port where oil mostly leaves the element port_T $\mathrm{oil}$ oil

Parameters

 Name Default Units Description Modelica ID use volume A $\mathrm{true}$ If true, a volume is present at port_A useVolumeA use volume B $\mathrm{true}$ If true, a volume is present at port_B useVolumeB use volume T $\mathrm{true}$ If true, a volume is present at port_T useVolumeT ${V}_{A}$ ${10}^{-6}$ ${m}^{3}$ Geometric volume at port A volumeA ${V}_{B}$ ${10}^{-6}$ ${m}^{3}$ Geometric volume at port B volumeB ${V}_{T}$ ${10}^{-6}$ ${m}^{3}$ Geometric volume at port T volumeT ${\mathrm{ΔT}}_{\mathrm{system}}$ $0$ $K$ Temperature offset from system temperature dT_system $d$ $0.005$ $m$ Diameter of equivalent orifice diameter ${p}_{\mathrm{open}}$ ${10}^{4}$ $\mathrm{Pa}$ Pressure differential to close one path completely popen ${k}_{1}$ $10$ Laminar part of orifice model k1 ${k}_{2}$ $2$ Turbulent part of orifice model, ${k}_{2}=\frac{1}{{C}_{d}^{2}}$ k2 ${G}_{\mathrm{leak}}$ ${10}^{-16}$ $\frac{{m}^{3}}{s\mathrm{Pa}}$ Conductance of leakage from A to B Gleak