Ideal Flow Source $—$ Ideal Flow Source

This component is an ideal flow source. The output is directly controlled by the input parameters or the input signal.

 Equations $T={T}_{0\left(\mathrm{oil}\right)}+{\mathrm{ΔT}}_{\mathrm{system}}$ ${p}_{\mathrm{abs}}={p}_{B}+{p}_{\mathrm{atm}\left(\mathrm{oil}\right)}$ $-\frac{{m}_{\mathrm{flow}\left(B\right)}}{{\mathrm{\rho }}_{\mathrm{oil}}\left(p={p}_{\mathrm{abs}},T=T,{v}_{\mathrm{air}}={v}_{\mathrm{gas}\left(\mathrm{oil}\right)},{p}_{\mathrm{sat}}={p}_{\mathrm{sat}}\right)}={q}_{\mathrm{set}}+{q}_{\mathrm{amp}}\mathrm{sin}\left(2\mathrm{\pi }\mathrm{time}{f}_{q}+{\mathrm{\theta }}_{q}\right)$

Variables

 Name Value Units Description Modelica ID ${p}_{\mathrm{abs}}$ $\mathrm{Pa}$ Absolute pressure, used for all property calls p_abs $T$ $K$ Local temperature T ${p}_{\mathrm{sat}}$ [1] $\mathrm{Pa}$ Gas saturation pressure p_sat ${\mathrm{\rho }}_{\mathrm{summary}}$ [2] $\frac{\mathrm{kg}}{{m}^{3}}$ Density summary_rho ${p}_{B\left(\mathrm{summary}\right)}$ ${p}_{B}$ $\mathrm{Pa}$ Pressure at port B summary_pB

[1] $\mathrm{oil.gasSaturationPressure}\left(T=T,{v}_{\mathrm{gas}}={\mathrm{oil.v}}_{\mathrm{gas}}\right)$

[2] $\mathrm{oil.density}\left(p={p}_{\mathrm{abs}},T=T,{v}_{\mathrm{air}}={\mathrm{oil.v}}_{\mathrm{gas}},{p}_{\mathrm{sat}}={p}_{\mathrm{sat}}\right)$

Connections

 Name Description Modelica ID $\mathrm{oil}$ oil ${\mathrm{port}}_{B}$ Port B, where oil leaves the component ($q<0$, ${p}_{B}<{p}_{A}$ means $0<\mathrm{Δp}$) port_B $\mathrm{commandSignal}$ Connector of input signal used as flow rate commandSignal ${q}_{\mathrm{set}}$ q_set

Parameters

 Name Default Units Description Modelica ID use input $\mathrm{true}$ If true, input port is present useInput ${\mathrm{ΔT}}_{\mathrm{system}}$ $0$ $K$ Temperature offset from system temperature dT_system ${q}_{\mathrm{bias}}$ $0.001$ $\frac{{m}^{3}}{s}$ Bias of flow qbias ${q}_{\mathrm{amp}}$ $0$ $\frac{{m}^{3}}{s}$ Amplitude of sinusoidal flow qamp ${q}_{\mathrm{freq}}$ $0$ $\mathrm{Hz}$ Frequency of sinusoidal flow qfreq ${q}_{\mathrm{phase}}$ $0$ $\mathrm{rad}$ Phase shift qphase