Id Flow Source $—$ Ideal flow source

This component describes an ideal flow source. The flow rate can become negative.

Implementation

The flow rate is given by:

q = qbias + qamp $\cdot$ sin(2 $\cdot$ $\mathrm{\pi }$ $\cdot$ qfreq $\cdot$ time + qphase)

Variables used in the above equations

 q flow rate at the outlet port $\left[\frac{{m}^{3}}{s}\right]$ qbias bias of flow rate at the outlet port $\left[\frac{{m}^{3}}{s}\right]$ qamp amplitude of sinusoidal flow rate at the outlet port $\left[\frac{{m}^{3}}{s}\right]$ qfreq frequency of sinusoidal flow rate at the outlet port $\left[\mathrm{Hz}\right]$ qphase phase of sinusoidal flow rate at the outlet port $\left[\mathrm{rad}\right]$

 Equations $\mathrm{\rho }={\mathrm{\rho }}_{\mathrm{oil}}\left(p={p}_{B}+{p}_{\mathrm{atm}\left(\mathrm{oil}\right)},T=T,{v}_{\mathrm{air}}={v}_{\mathrm{gas}\left(\mathrm{oil}\right)},{p}_{\mathrm{sat}}={p}_{\mathrm{sat}}\right)$ $T={T}_{0\left(\mathrm{oil}\right)}+{\mathrm{ΔT}}_{\mathrm{system}}$ $-\frac{{m}_{\mathrm{flow}\left(B\right)}}{\mathrm{\rho }}={q}_{\mathrm{bias}}+{q}_{\mathrm{amp}}\mathrm{sin}\left(2\mathrm{\pi }\mathrm{time}{f}_{q}+{\mathrm{\theta }}_{q}\right)$

Variables

 Name Value Units Description Modelica ID $\mathrm{\rho }$ $\frac{\mathrm{kg}}{{m}^{3}}$ Density rho $T$ $K$ Local temperature T ${p}_{\mathrm{sat}}$ [1] $\mathrm{Pa}$ Gas saturation pressure p_sat

[1] $\mathrm{oil.gasSaturationPressure}\left(T=T,{v}_{\mathrm{gas}}={\mathrm{oil.v}}_{\mathrm{gas}}\right)$

Connections

 Name Description Modelica ID ${\mathrm{port}}_{B}$ Port B, where oil leaves the component ($q<0$, ${p}_{B}<{p}_{A}$ means $0<\mathrm{Δp}$) port_B $\mathrm{oil}$ oil

Parameters

 Name Default Units Description Modelica ID ${q}_{\mathrm{bias}}$ $0.001$ $\frac{{m}^{3}}{s}$ Bias of flow qbias ${q}_{\mathrm{amp}}$ $0$ $\frac{{m}^{3}}{s}$ Amplitude of sinusoidal flow qamp ${q}_{\mathrm{freq}}$ $0$ $\mathrm{Hz}$ Frequency of sinusoidal flow qfreq ${q}_{\mathrm{phase}}$ $0$ $\mathrm{rad}$ Phase shift qphase ${\mathrm{ΔT}}_{\mathrm{system}}$ $0$ $K$ Temperature offset from system temperature dT_system