Diesel $—$ Diesel engine with speed controller

This component describes a diesel engine with speed controller and inertia.

Implementation

The Diesel component uses a static characteristic curve of maximum torque as a function of speed. This relation is given by a polynomial:

$\mathrm{taumax}={w}^{3}{\mathrm{diesel}}_{3}+{w}^{2}{\mathrm{diesel}}_{2}+w{\mathrm{diesel}}_{1}+{\mathrm{diesel}}_{0}$

There is a simple speed controller implemented. The reference signal for this controller is given by:

$\mathrm{commandedSpeed}$ = 0 $\ge$ ${w}_{\mathrm{min}}$

$\mathrm{commandedSpeed}$ = 1 $\ge$ ${w}_{\mathrm{max}}$

To set the initial speed of the diesel engine use, the parameter wstart under the Properties tab ( ). Do not use the modifier Flywheel(w(start=100)) or connect the shaft rigidly to other inertias which have been assigned initial values because this may override the parameter wstart.

Limitations

This simple model does not describe the startup of a diesel engine.

Variables

 Name Value Units Description Modelica ID $\mathrm{MnS}$ Diesel engine with speed controller without inertia MnS $\mathrm{Flywheel}$ Flywheel

Connections

 Name Description Modelica ID ${\mathrm{flange}}_{b}$ (right) driven flange (flange axis directed OUT OF cut plane) flange_b $\mathrm{commandedSpeed}$ Connector of input signal used as flow rate commandedSpeed

Parameters

 Name Default Units Description Modelica ID ${w}_{\mathrm{start}}$ $200$ $\frac{\mathrm{rad}}{s}$ Angular velocity at simulation start wstart ${w}_{\mathrm{min}}$ $75$ $\frac{\mathrm{rad}}{s}$ Minimum angular velocity wmin ${w}_{\mathrm{max}}$ $240$ $\frac{\mathrm{rad}}{s}$ Maximum angular velocity wmax $J$ $1$ $\mathrm{kg}{m}^{2}$ Moment of inertia of flywheel J ${\mathrm{diesel}}_{3}$ $9.02·{10}^{-6}$ diesel3 ${\mathrm{diesel}}_{2}$ $-0.00752$ diesel2 ${\mathrm{diesel}}_{1}$ $1.5939$ diesel1 ${\mathrm{diesel}}_{0}$ $75.022$ diesel0 ${k}_{\mathrm{diesel}}$ $10$ Gain of speed controller, Nm / (rad/sec) kdiesel