compute the adjoint of a square Matrix - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Linear Algebra : LinearAlgebra Package : Standard : LinearAlgebra/Adjoint

LinearAlgebra[Adjoint] - compute the adjoint of a square Matrix

Calling Sequence

Adjoint(A, options)

Parameters

A

-

square Matrix

options

-

(optional); constructor options for the result object

Description

• 

The Adjoint(A) function constructs Matrix M such that A.M=DeterminantA.IdentityMatrixDimensionsA.  This is known as the classical adjoint  of A.

• 

The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list.  If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).

• 

This function is part of the LinearAlgebra package, and so it can be used in the form Adjoint(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[Adjoint](..).

Examples

withLinearAlgebra:

A1:=9,4,1|1,3,1|0,8,1:

C1:=AdjointA1,datatype=float

C1:=11.1.8.4.9.72.7.10.23.

(1)

A1.C1

103.0.0.0.103.0.0.0.103.

(2)

DeterminantA1

103

(3)

A2:=a,2a|3,a:

C2:=AdjointA2

C2:=a32aa

(4)

A2.C2

a26a00a26a

(5)

DeterminantA2

a26a

(6)

See Also

LinearAlgebra, LinearAlgebra[Determinant], LinearAlgebra[Dimension], LinearAlgebra[IdentityMatrix], Matrix

References

  

de Boor, Carl. "An Empty Exercise." ACM SIGNUM Newsletter, Vol. 25 No. 2. (1990): 2-6.


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam