reduce a state-space system - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Science and Engineering : Dynamic Systems : System Manipulation Tools : DynamicSystems/SSModelReduction

DynamicSystems[SSModelReduction] - reduce a state-space system

Calling Sequence

SSModelReduction( Amat, Bmat, Cmat, Dmat, opts )

Parameters

Amat

-

Matrix; system matrix of a state-space system

Bmat

-

Matrix; input matrix of a state-space system

Cmat

-

Matrix; output matrix of a state-space system

Dmat

-

(optional) Matrix; direct-through matrix of a state-space system. If not specified, a zero-matrix of appropriate dimension is used.

opts

-

(optional) equation(s) of the form option = value; specify options for the SSModelReduction command

Description

• 

The SSModelReduction command returns reduced-order state-space system matrices from a given set of state-space system matrices, Amat, Bmat, Cmat, and Dmat.

• 

For a state-space system defined by the state and output equations ⅆⅆtXt=AXt+BUt and Yt=CXt+DUt, respectively, the state vector X(t) with dimension n can be partitioned into Xt=VectorX1,X2, where X1 contains the states to be retained and   X2 contains the states to be removed. The dimension of X1, referred to here as r, is the reduced state order. The number of input of the system is denoted as i, while the number of output is denoted as o.

• 

Two options, cutoff and removestate determine the number of states to be removed. Only one is used; if both are specified, cutoff is used. See the Options section for a description of their operation.

• 

Two reduction methods are supported:  truncate and matchDC.

• 

The truncate method returns the reduced state-space matrices by simply removing the selected states. The reduced state-space matrices are given by:

Ar=A11

Br=B1

Cr=C1

Dr=D

where the submatrices A11, B1, and C1 are defined by the following partitioning of the original state-space matrices:

A=MatrixA11,A12,A21,A22

B=MatrixB1,B2

C=MatrixC1,C2

where A11 has dimension r x r, B1 has dimension r x i, and C1 has dimension o x r.

• 

The matchDC method computes the reduced state-space matrices such that the DC gain (steady-state response) of the reduced-order system matches that of the original system. With the same partition as described for the truncate option, the matchDC reduced state-space matrices are

Ar = ( A11 + signK * A12 . A22inv . A21 )

Br = ( B1 + signK * A12 . A22inv . B2 )

Cr = ( C1 + signK * C2 . A22inv . A21 )

Dr = ( D + signK * C2 . A22inv . B2 )

where for continuous systems signK = -1 and A22inv = A22^(-1) while for discrete systems signK = +1 and A22inv = (I - A22)^(-1), with I the identity matrix of appropriate dimension. The matchDC method fails if A22 (for continuous systems) or IA22 (for discrete systems) is singular.

Examples

withDynamicSystems:

Amat:=5|1|0,0|2|1,0|0|1:

Bmat:=0,0,1:

Cmat:=1|0|0:

Dmat:=0:

SSModelReductionAmat,Bmat,Cmat,Dmat,'removestate'=2,method=matchDC

5,12,1,0

(1)

SSModelReductionAmat,Bmat,Cmat,Dmat,'removestate'=2,method=truncate

5,0,1,0

(2)

See Also

DynamicSystems, DynamicSystems[Controllable], DynamicSystems[Grammians], DynamicSystems[Observable], DynamicSystems[SSTransformation], LinearAlgebra


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam