generate the Routh table of a polynomial - Maple Help

Online Help

All Products    Maple    MapleSim

Home : Support : Online Help : Science and Engineering : Dynamic Systems : System Manipulation Tools : DynamicSystems/RouthTable

DynamicSystems[RouthTable] - generate the Routh table of a polynomial

Calling Sequence

RouthTable(p, s, opts)

RouthTable(p, s, ohp, opts)




algebraic; polynomial with real (or symbolic) coefficients



name; indeterminate of the polynomial p



(optional); left or right (default)



(optional) equation(s) of the form option = value; specify options for the RouthTable command



The RouthTable command returns the Routh table of the polynomial p as a Matrix. The parameter s is the indeterminate of the polynomial p. The table can be used to determine the number of roots of p in either the open right half complex plane (open RHP) or the open left half complex plane (open LHP).


If the option StableCondition=true is included, the RouthTable command outputs an expression giving conditions under which the polynomial is stable. In this case, no Matrix is returned. See Options for details.


The polynomials are scaled at each step of the computation so that no fractions appear in the table.


The right column of the table consists of powers of s corresponding to the highest order power of the polynomial associated with that row. A bracketed power of s (a list) indicates that the original polynomial associated with that row was degenerate, that is, equal to zero. In that case, the derivative of the polynomial associated with the previous row is used. Note that degenerate polynomials indicate the existence of zeros z and -z for the polynomial p.


The number of zeros in the open RHP of the polynomial is given by the number of sign changes in the first column of the table.


The optional parameter ohp determines whether the sign changes in the table correspond to zeros in the open RHP or open LHP. If ohp is left the transformation s -> -s is applied to p. That moves the zeros in the LHP to RHP, and vice-versa. Consequently the number of sign changes in the first column indicates the number of zeros in the open LHP.







There is one sign change in the first column; therefore, there is one root in the open RHP. The s3 indicates a degenerate polynomial. Consequently, there might be roots on the imaginary axis. Check the open LHP.




There are two sign changes in the first column; therefore, there are two roots in the open LHP. Together with the previously determined one root in the RHP, this accounts for three roots of this polynomial of degree five, leaving two roots on the imaginary axis.




The boolean expression is true if and only if all roots of the polynomial are in the open LHP; in this case, if the coefficients are both positive.

See Also

DynamicSystems, DynamicSystems[CharacteristicPolynomial], PolynomialTools[Hurwitz]



Benedir, M., and Picinbono, B. "Extended Table for Eliminating the Singularities in Routh's  Array," IEEE Transactions on Automatic Control, Vol. 35, No. 2, (February 1990): 218-220.

Download Help Document

Was this information helpful?

Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam