compute the controllability and observability grammians - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Science and Engineering : Dynamic Systems : System Manipulation Tools : DynamicSystems/Grammians

DynamicSystems[Grammians] - compute the controllability and observability grammians

Calling Sequence

Grammians( sys, opts )

Parameters

sys

-

System(ss); state-space System object

opts

-

(optional) equation(s) of the form option = value; specify options for the Grammians command

Description

• 

The Grammians command computes the grammians of sys, a state-space system.

• 

Depending on the value of the output option, either the controllability grammian, the observability grammian, or both, is computed.

• 

For a grammian to exist, the system must be stable. For a continuous-time system, all eigenvalues, λ, of A must lie in the open left-half plane: λ<0. For a discrete-time system, all eigenvalues, λ, of A must lie in the open unit-circle: λ<1. If sys is not stable, an error occurs, unless the option checkstability is false.

• 

A grammian is the positive-definite matrix X that solves the appropriate Lyapunov equation.

Controllability Grammian

• 

For a continuous system, the Lyapunov equation is A&period;X&plus;X&period;AT&equals;B&period;BT.

• 

For a discrete system, the Lyapunov equation is A&period;X&period;ATX&equals;B&period;BT.

Observability Grammian

• 

For a continuous system, the Lyapunov equation is AT&period;X&plus;X&period;A&equals;CT&period;C.

• 

For a discrete system, the Lyapunov equation is AT&period;X&period;AX&equals;CT&period;C.

Examples

withDynamicSystems&colon;

Assign a state-space system.

aSys:=StateSpace5&comma;3&verbar;3&comma;4&comma;2&comma;3&comma;1&comma;0&verbar;0&comma;1&comma;0&comma;0&colon;

Compute its controllability grammian.

Cg:=GrammiansaSys&comma;output&equals;C

Cg:=1.681818181818182.136363636363642.136363636363642.72727272727273

(1)

Verify that Cg meets the Lyapunov equation (b^+ is the transpose of b, see LinearAlgebra[Transpose]).

useaSysina&period;Cg&plus;Cg&period;a&equals;b&period;b%Tend use

4.000000000000006.000000000000006.000000000000009.00000000000001&equals;4669

(2)

See Also

DynamicSystems, DynamicSystems[ControllabilityMatrix], DynamicSystems[ObservabilityMatrix], DynamicSystems[Observable], DynamicSystems[SSTransformation], LinearAlgebra, LinearAlgebra[Eigenvalues], LinearAlgebra[Rank]


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam