Home : Support : Online Help : MapleSim Toolboxes : MapleSim Driveline Component Library : Compound Gear Sets : Gear Sets : DrivelineComponentLibrary/ravigneauxGearbox

Ravigneaux Gear

Ravigneaux Gear component

The Ravigneaux Gear component is a double planetary gear set with two sun gears (a small sun and a large sun), a carrier and a ring gear. The carrier carries two sets of independent planets; outer planets and inner planets which mesh with the large sun and the small sun, respectively. Each inner planet gear meshes with a corresponding outer planet gear. The gear ratios are uniquely defined by specifying the rear and front planetary gears Ring to Sun ratios.

This compound planetary gear set is constructed from four gear pairs; one Planet Ring gear, and three Planet Planet gears as shown in the diagram below.

Internal Structure

Internal Settings

 Component PP${\mathbf{G}}_{\mathbf{1}}$ PG${\mathbf{G}}_{\mathbf{2}}$ PG${\mathbf{G}}_{\mathbf{3}}$ PR${\mathbf{G}}_{\mathbf{1}}$ , ${r}_{R/\mathrm{lS}}$ $\mathrm{ideal}=\mathbf{true}$ $\mathrm{ideal}=\mathbf{true}$ $\mathrm{ideal}=\mathbf{true}$ $\mathrm{ideal}=\mathbf{true}$ $\mathrm{ideal}=\mathbf{true}$ $\mathrm{ideal}=\mathbf{false}$    $\mathrm{ideal}=\mathbf{false}$ $\mathrm{η}\left(\mathrm{ω}\right)$ $\mathrm{ideal}=\mathbf{false}$ $\mathrm{η}\left(\mathrm{ω}\right)$ $\mathrm{ideal}=\mathbf{false}$ $\mathrm{η}\left(\mathrm{ω}\right)$ $\mathrm{ideal}=\mathbf{false}$ $\mathrm{η}\left(\mathrm{ω}\right)$ $\mathrm{ideal}=\mathbf{false}$  $\mathrm{ideal}=\mathbf{false}$ $\mathrm{ideal}=\mathbf{false}$ $\mathrm{ideal}=\mathbf{false}$  $\mathrm{ideal}=\mathbf{false}$

Connections

 Name Condition Description ID $-$ Carrier flange carrier Ring (R) $-$ Ring flange ring $-$ Sun flange small_sun $-$ Large flange large_sun Inner Planet flange inner_planet Outer Planet flange outer_planet $\mathrm{ideal}\mathbf{=}\mathbf{false}$ Conditional real output port for power loss lossPower

Parameters

Symbol

Condition

Default

Units

Description

ID

$\mathrm{ideal}$

-

$\mathbf{true}$

-

Defines whether the component is:

true - ideal or

false - non-ideal

ideal

data source

$\mathrm{ideal}=\mathbf{false}$

GUI

-

Defines the source for the loss data:

 • entered via GUI [GUI]
 • by an attachment [attachment]
 • by an external file [file]

datasourcemode

$\mathrm{ideal}=\mathbf{false}$

true

-

Defines whether one efficiency data table is used for all meshing loss calculations [] or the efficiency of each meshing gear pair is given by a separate data table [$=\mathbf{false}$].

SameMeshingEfficiency

${r}_{R/\mathrm{sS}}$

$-$

$4$

-

Ring/Small Sun Gear ratio

ratio1

${r}_{R/\mathrm{lS}}$

$\mathbf{-}$

$2$



Ring/Large Sun Gear ratio

ratio2

${n}_{\mathrm{pl}}$

$\mathrm{ideal}=\mathbf{false}$

$1$



Number of planet gear pairs

A planet pair consists of a set of inner planet and outer planet gears

numberofPlanets

$\mathrm{\eta }\left(\mathrm{ω}\right)$

$\mathrm{ideal}=\mathbit{false}$

same loss data = true

data source = GUI

$\left[0,1,1\right]$

$\left[\frac{\mathrm{rad}}{s},-,-\right]$

Defines all velocity dependant meshing efficiencies.

The columns:

[${\mathrm{\omega }}_{}$     (${\mathrm{\eta }}_{1}$ ($\mathrm{ω}$ )     ${\mathrm{\eta }}_{2}$ ($\mathrm{ω}$ )]

Five options are available:

 • 1 by 1 array:

Entered value is taken as the constant efficiency for forward and backward cases

${\mathrm{\eta }}_{1}$ ($\mathrm{ω}$ ) = ${\mathrm{\eta }}_{2}$ ($\mathrm{ω}$ ) = ${\mathrm{\eta }}_{}$

 • 1 by 2 array:

First entered value is taken as the constant efficiency for forward case and the second for backward cases

${\mathrm{\eta }}_{1}$ ($\mathrm{\omega }$) =  ($\mathrm{ω}$ ) = ${\mathrm{\eta }}_{2}$

 • 1 by 3 array:

First column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively

 • n by 2 array:

Second column is forward and backward efficiency

$\mathrm{η}$ ($\mathrm{ω}$) = ${\mathrm{\eta }}_{1}$ ($\mathrm{\omega }$ ) = ${\mathrm{\eta }}_{2}$($\mathrm{ω}$ )

 • n by 3 array:

Second column is forward efficiency

${\mathrm{\eta }}_{1}$ ($\mathrm{ω}$)

Third column is backward efficiency

${\mathrm{\eta }}_{2}$ ($\mathrm{\omega }$ )

meshinglossTable5

$\mathrm{ideal}=\mathbf{false}$

same loss data = true

data source = attachment

-

Defines velocity dependant meshing efficiency table

First column is angular velocity (${\mathrm{\omega }}_{}$)

(See $\left[\mathrm{η}\right]$ below)

data5

$\mathrm{ideal}=\mathbf{false}$

same loss data = true

data source =  file

-

fileName5

$\left[\mathrm{η}\right]$

$\mathrm{ideal}=\mathbf{false}$

same loss data = true

data source = attachment or file

$\left[2,3\right]$

-

Defines the corresponding data columns used for forward efficiency (${\mathrm{\eta }}_{1}$) and backward efficiency (${\mathrm{\eta }}_{2}$ )

Two options are available:

 • 1 by 1 array:

Data column corresponding to the column number is used for both forward and backward efficiency

 • 1 by 2 array:

Data column corresponding to the first column number is used for forward efficiency (and data column corresponding to the second column number is used for backward efficiency (

columns5

${\mathrm{\eta }}_{\mathrm{iP}/\mathrm{sS}}^{}\left({{\mathrm{\omega }}^{}}_{\mathrm{sS}/C}^{}\right)$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = GUI



$\left[0,1,1\right]$

Defines inner Planet/small Sun velocity dependant meshing efficiency as a function of ${{\mathrm{\omega }}^{}}_{\mathrm{sS}/C}$ .

The columns are:

[${{\mathrm{\omega }}^{}}_{\mathrm{sS}/C}$     ${\mathrm{\eta }}_{\mathit{1}}^{}\left({{\mathrm{\omega }}^{}}_{\mathrm{sS}/C}^{}\right)$     ${\mathrm{\eta }}_{2}$(${{\mathrm{\omega }}^{}}_{\mathrm{sS}/C}^{}$ )]

First column is angular velocity of the small sun gear w.r.t. the carrier (${\mathrm{ω}}_{\mathrm{sS}/C}$)

Five options are available:

 • 1 by 1 array:

Entered value is taken as the constant efficiency for forward and backward cases

${\mathrm{\eta }}_{1}$(${\mathrm{\omega }}_{\mathrm{sS}/C}$ ) =$\left({\mathrm{\omega }}_{\mathrm{sS}/C}\right)$ =

 • 1 by 2 array:

First entered value is taken as the constant efficiency for forward case and the second for backward cases

${\mathrm{η}}_{1}$(${\mathrm{\omega }}_{\mathrm{sS}/C}$ ) =(${\mathrm{\omega }}_{\mathrm{sS}/C}$ ) =

 • 1 by 3 array:

First column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively

 • n by 2 array:

Second column is forward and backward efficiencies.

(${\mathrm{\omega }}_{\mathrm{sS}/C}$ ) = (${\mathrm{\omega }}_{\mathrm{sS}/C}$ ) = (${\mathrm{\omega }}_{\mathrm{sS}/C}$ )

 • n by 3 array:

Second column is forward efficiency

${\mathrm{\eta }}_{1}$ (${\mathrm{\omega }}_{\mathrm{sS}/C}$ )

Third column is backward efficiency

(${\mathrm{\omega }}_{\mathrm{sS}/C}$ )

meshinglossTable1

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = file

-

Defines the velocity dependent meshing efficiency

First column is angular velocity (${\mathrm{\omega }}_{\mathrm{sS}/C}$ )

(See $\left[{\mathrm{\eta }}_{\mathrm{iP}/\mathrm{sS}}^{}\right]$ below)

data1

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = file

-

fileName1

$\left[{\mathrm{η}}_{\mathrm{iP}/\mathrm{sS}}\right]$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = attachment or file

$\left[2,3\right]$

-

Defines the corresponding data columns used for forward efficiency (${\mathrm{\eta }}_{1}$) and backward efficiency (${\mathrm{\eta }}_{2}$)

Two options are available:

 • 1 by 1 array:

Data column corresponding to the column number is used for both forward and backward efficiency (

 • 1 by 2 array:

Data column corresponding to the first column number is used for forward efficiency (${\mathrm{\eta }}_{1}$) and data column corresponding to the second column number is used for backward efficiency (${\mathrm{\eta }}_{2}$)

columns1

${\mathrm{\eta }}_{\mathrm{oP}/\mathrm{iP}}^{}\left({{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}^{}\right)$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = GUI



$\left[0,1,1\right]$

Defines outer Planet/inner Planet velocity dependant meshing efficiency as a function of ${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ .

The columns are:

[${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$     (${\mathrm{\eta }}_{1}$(${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ )     ${\mathrm{\eta }}_{2}$(${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ )]

First column is angular velocity of the inner planet gear w.r.t. the carrier (${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$)

Five options are available:

 • 1 by 1 array:

Entered value is taken as the constant efficiency for forward and backward cases

${\mathrm{\eta }}_{1}$(${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ ) =$\left({{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}\right)$ =

 • 1 by 2 array:

First entered value is taken as the constant efficiency for forward case and the second for backward cases

${\mathrm{η}}_{1}$(${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ ) =(${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ ) =

 • 1 by 3 array:

First column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively

 • n by 2 array:

Second column is forward and backward efficiency

(${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ ) = (${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ ) = (${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ )

 • n by 3 array:

Second column is forward efficiency

${\mathrm{\eta }}_{1}$ (${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ )

Third column is backward efficiency

(${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ )

meshinglossTable2

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = attachment

-

Defines the velocity dependent meshing efficiency

First column is angular velocity (${{\mathrm{\omega }}^{}}_{\mathrm{iP}/C}$ )

(See $\left[{\mathrm{\eta }}_{P\mathrm{1}/S}\right]$ below)

data2

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = file

-

fileName2

$\left[{\mathrm{η}}_{\mathrm{oP}/\mathrm{iP}}\right]$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = attachment or file

$\left[2,3\right]$

-

Defines the corresponding data columns used for forward (${\mathrm{\eta }}_{1}$) and backward (${\mathrm{\eta }}_{2}$) efficiency

Two options are available:

 • 1 by 1 array:

Data column corresponding to the column number is used for both forward and backward efficiency (

 • 1 by 2 array:

Data column corresponding to the first column number is used for forward efficiency (${\mathrm{\eta }}_{1}$) and data column corresponding to the second column number is used for backward efficiency (${\mathrm{\eta }}_{2}$)

columns2

${\mathrm{\eta }}_{R/\mathrm{oP}}\left({{\mathrm{\omega }}^{}}_{R/C}\right)$${}$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = GUI



$\left[0,1,1\right]$

Defines Ring/outer Planet velocity dependant meshing efficiency as a function of  ${{\mathrm{\omega }}^{}}_{R/C}$ .

The columns are:

[${{\mathrm{\omega }}^{}}_{R/C}$     (${\mathrm{\eta }}_{1}$(${{\mathrm{\omega }}^{}}_{R/C}$ )     ${\mathrm{\eta }}_{2}$(${{\mathrm{\omega }}^{}}_{R/C}$ )]

First column is angular velocity of the ring gear w.r.t. the carrier (${{\mathrm{\omega }}^{}}_{R/C}$)

Five options are available:

 • 1 by 1 array:

Entered value is taken as the constant efficiency for forward and backward cases

${\mathrm{\eta }}_{1}$(${{\mathrm{\omega }}^{}}_{R/C}$ ) =$\left({{\mathrm{\omega }}^{}}_{R/C}\right)$ =

 • 1 by 2 array:

First entered value is taken as the constant efficiency for forward case and the second for backward cases

${\mathrm{η}}_{1}$(${{\mathrm{\omega }}^{}}_{R/C}$ ) =(${{\mathrm{\omega }}^{}}_{R/C}$ ) =

 • 1 by 3 array:

First column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively

 • n by 2 array:

Second column is forward and backward efficiency

(${{\mathrm{\omega }}^{}}_{R/C}$ ) = (${{\mathrm{\omega }}^{}}_{R/C}$ ) = (${{\mathrm{\omega }}^{}}_{R/C}$ )

 • n by 3 array:

Second column is forward efficiency

${\mathrm{\eta }}_{1}$ (${{\mathrm{\omega }}^{}}_{R/C}$ )

Third column is forward efficiency

(${{\mathrm{\omega }}^{}}_{R/C}$ )

meshinglossTable3

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = attachment

-

Defines the velocity dependent meshing efficiency

First column is angular velocity (${\mathrm{ω}}_{R/C}$ )

(See $\left[{\mathrm{\eta }}_{R/\mathrm{oP}}\right]$ below)

data3