Loss Element - MapleSim Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : MapleSim Toolboxes : MapleSim Driveline Component Library : Loss Elements : DrivelineComponentLibrary/lossElement

Loss Element

Loss Element component

        

 

The Loss Element component models losses using velocity-dependent efficiency.

 

 

Kinematic Equation

 

ϕfb = ϕfa+ϕ  

 

Where ϕfa  and ϕfb are the absolute rotation angles of flangea and flangeb, respectively and ϕ is the fixed rotation angles of flangeb with respect to flangeb.

Also ϕa and ϕb are defined as:

 

     

ϕx = ϕfx  ϕsupport      use Support = true0otherwise  ,   x ∈ a,b

 

 

 

Torque Balance Equation (No Inertia)

 

τb= τa+τloss

 

Where τa and τb are the torques applied to flangea and flangeb, respectively.

 

Also   τloss is the loss torque and is defined as:

τloss&equals;&lpar;1&eta;1&lpar;&omega;a&rpar;&rpar; &tau;a        &omega;a·&tau;a0  &lpar;11η2&lpar;ωa&rpar; &rpar;·&tau;a     &omega;a·&tau;a<0        

Where

ωa = &DifferentialD;&DifferentialD; t ϕa &equals;&varphi;·a 

 

 

Power Loss:

When the gear is non-ideal (ideal = false ), the power loss (Ploss) is calculated as:

 

Ploss &equals; 0ideal&equals;true or ideal&equals;false and locked&equals;true1η1 τa· ωaτa· ωa0 11η2 τa· ωaτa· ωa<0

 

Connections 

Name

Condition

Description

ID

flangea

-

Flange to driver shaft

flange_a

flangeb

-

Flange to driven shaft

flange_b

support

use support &equals;true

Conditional Support Flange

Support

Loss Power

ideal&equals;false

Conditional real output port for power loss

lossPower

 

 

Parameters

Symbol

Condition

Default

Units

Description

ID

ideal

-

false

-

Defines whether the component is:

true - ideal or

false - non-ideal

ideal

&varphi; 

-

0

rad

Defines fixed rotation of flangeb with respect to flangea

deltaPhi

data source

ideal&equals;false

GUI

-

Defines the source for the loss data:

• 

entered via GUI [GUI]

• 

by an attachment [attachment]

• 

by an external file [file]        

datasourcemode

Use support        

-

false

-

Enables/disables the support flange        

useSupport

&eta;&omega;a

data source = GUI

  0&comma;1&comma;1 

rads&comma;&comma;

Defines velocity dependant efficiency

The columns are:

[ωa     (η1 (ωa )     η2 (ωa )]

Five options are available:

• 

1 by 1 array: entered value is taken as the constant efficiency for forward and backward cases

η1 (ωa ) = η2 (ωa ) = η

• 

1 by 2 array: first entered value is taken as the constant efficiency for forward case and the second for backward cases

η1 (ωa ) = &eta;1 &comma; &eta;2 (ωa ) = η2

• 

1 by 3 array: first column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively

• 

 n by 2 array: 2nd column is efficiency

&eta; (ωa ) = η1 (ωa ) = η2(ωa )

• 

n by 3 array:

2nd column is forward efficiency

η1  (ωa )

3rd column is backward efficiency

η2  (ωa )

Note: The rows of the array are ordered according to ωa, with the first row having the smallest |ωa|

lossTable

data source = attachment

  -

Defines velocity dependant  efficiency

First column is angular velocity (ωa )

(See col &eta; below)

data

data source = file

  -

fileName

col &eta;

data source = attachment or file

  2&comma;3

 

-

Defines the corresponding data columns used for forward efficiency (η1) and backward efficiency (η2 )

Two options are available:

• 

1 by 1 array:

Data column corresponding to the column number is used for both forward and backward efficiency η1&equals;&eta;2 &equals; &eta; 

• 

1 by 2 array:

Data column corresponding to the first column number is used for forward efficiency ( &eta;1&rpar; 

and data column corresponding to the second column number is used for backward efficiency ( &eta;2&rpar;

columns

smoothness

ideal&equals;false

Table points are linearly interpolated

-

Defines the smoothness of table interpolation. There are two options:

• 

Table points are linearly interpolated

• 

Table points are interpolated such that the first derivative is continuous

smoothness

 

See Also

MapleSim Driveline Library Overview

MapleSim Library Overview

1-D Mechanical Overview

Loss Elements

 

 

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam