Dual-Ratio Planetary Gear - MapleSim Help

Home : Support : Online Help : MapleSim Toolboxes : MapleSim Driveline Component Library : Simple Gear Sets : Planetary Gear Sets : DrivelineComponentLibrary/dualRatioPlanetaryGear

Dual-Ratio Planetary Gear

Dual-Ratio Planetary Gear component

The Dual-Ratio Planetary Gear is based on the Planetary Gear component. It has a set of two co-rotating planet gears with different radii where the first planet meshes with the sun gear and the second planet meshes with the ring gear. Both Ring/Planet(1) and Planet(2)/Sun ratios must be provided. For planets/carrier bearing damping calculations, a set of Planet(1) and Planet(2) gears is considered is one body.

Internal Structure

Internal Settings

 Component PPG${}_{\mathbf{1}}$ PR${\mathbf{G}}_{\mathbf{1}}$ , ${r}_{R/P\mathrm{2}}$ = ${r}_{P\mathrm{1}/S}$ = ${r}_{R/P\mathrm{2}}$ $\mathrm{ideal}=\mathbf{true}$ $\mathrm{ideal}=\mathbf{true}$ $\mathrm{ideal}=\mathbf{true}$ $\mathrm{ideal}=\mathbf{false}$    $\mathrm{ideal}=\mathbf{false}$ $\mathrm{η}\left(\mathrm{ω}\right)$ $\mathrm{ideal}=\mathbf{false}$ $\mathrm{η}\left(\mathrm{ω}\right)$  $\mathrm{ideal}=\mathbf{false}$  $\mathrm{ideal}=\mathbf{false}$ $\mathrm{ideal}=\mathbf{false}$

Connections

 Name Condition Description ID $\mathrm{Carrier}$ $-$ Carrier flange carrier $\mathrm{Planet}$ Planet flange planet Ring $-$ Ring flange ring $\mathrm{Sun}$ $-$ Sun flange sun $\mathrm{ideal}\mathbf{=}\mathbf{false}$ Conditional real output port for power loss lossPower

Parameters

Symbol

Condition

Default

Units

Description

ID

$\mathrm{ideal}$

$-$

$\mathrm{true}$

-

Defines whether the component is:

true - ideal or

false - non-ideal

ideal

data source

$\mathrm{ideal}=\mathbf{false}$

GUI

-

Defines the source for the loss data:

 • entered via GUI [GUI]
 • by an attachment [attachment]
 • by an external file [file]

datasourcemode

$\mathrm{ideal}=\mathbf{false}$

true

-

Defines whether one efficiency data table is used for all meshing loss calculations [] or the efficiency of each meshing gear pair is given by a separate data table [$=\mathbf{false}$].

SameMeshingEfficiency

${r}_{P\mathrm{1}/S}$

$-$

$1$

-

Planet1/Sun Gear ratio

ratio1

${r}_{R/P\mathrm{2}}$

$\mathbf{-}$

$4$

$-$

Ring/Planet2 Gear ratio

ratio2

${n}_{\mathrm{pl}}$

$\mathrm{ideal}=\mathbf{false}$

$1$

$-$

Number of planet gear pairs.

A planet pair consists of a set of Planet1 and Planet2 gears

numberofPlanets

$\mathrm{\eta }\left(\mathrm{ω}\right)$

$\mathrm{ideal}=\mathbf{false}$

same loss data = true

data source = GUI

$\left[0,1,1\right]$

$\left[\frac{\mathrm{rad}}{s},-,-\right]$

Defines all velocity dependant meshing efficiencies.

The columns:

[${\mathrm{\omega }}_{}$     (${\mathrm{\eta }}_{1}$ ($\mathrm{ω}$ )     ${\mathrm{\eta }}_{2}$ ($\mathrm{ω}$ )]

Five options are available:

 • 1 by 1 array: entered value is taken as the constant efficiency for forward and backward cases

${\mathrm{\eta }}_{1}$ ($\mathrm{ω}$ ) = ${\mathrm{\eta }}_{2}$ ($\mathrm{ω}$ ) = ${\mathrm{\eta }}_{}$

 • 1 by 2 array: first entered value is taken as the constant efficiency for forward case and the second for backward cases

${\mathrm{\eta }}_{1}$ ($\mathrm{\omega }$ )=  ($\mathrm{ω}$ ) = ${\mathrm{\eta }}_{2}$

 • 1 by 3 array: first column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively
 • n by 2 array: 2nd column is forward and backward efficiency

$\mathrm{η}$ ($\mathrm{ω}$) = ${\mathrm{\eta }}_{1}$ ($\mathrm{\omega }$ ) = ${\mathrm{\eta }}_{2}$($\mathrm{ω}$ )

 • n by 3 array:

2nd column is forward efficiency

${\mathrm{\eta }}_{1}$ ($\mathrm{ω}$)

3rd column is backward efficiency

${\mathrm{\eta }}_{2}$ ($\mathrm{\omega }$ )

meshinglossTable3

$\mathrm{ideal}=\mathbf{false}$

same loss data = true

data source = attachment

-

Defines velocity dependant meshing efficiency

First column is angular velocity (${\mathrm{\omega }}_{}$)

(See $\left[\mathrm{η}\right]$ below)

data3

$\mathrm{ideal}=\mathbf{false}$

same loss data = true

data source = file

-

fileName3

$\left[\mathrm{η}\right]$

$\mathrm{ideal}=\mathbf{false}$

same loss data = true

data source = attachment or file

$\left[2,3\right]$

-

Defines the corresponding data columns used for forward efficiency (${\mathrm{\eta }}_{1}$) and backward efficiency (${\mathrm{\eta }}_{2}$ )

Two options are available:

 • 1 by 1 array:

Data column corresponding to the column number is used for both forward and backward efficiency (

 • 1 by 2 array:

Data column corresponding to the first column number is used for forward efficiency (

and data column corresponding to the second column number is used for backward efficiency (

columns3

${\mathrm{η}}_{R/P\mathrm{2}}\left({\mathrm{\omega }}_{R/C}\right)$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = GUI



$\left[0,1,1\right]$

Defines Ring/Planet2 velocity dependant meshing efficiency as a function of ${\mathrm{\omega }}_{R/C}$ .

The columns are:

[${\mathrm{\omega }}_{R/C}$     ${\mathrm{\tau }}_{1}$(${\mathrm{\omega }}_{R/C}$ )     ${\mathrm{\tau }}_{2}$(${\mathrm{\omega }}_{R/C}$ )]

First column is angular velocity of the ring gear w.r.t. the carrier (${\mathrm{\omega }}_{R/C}$)

Five options are available:

 • 1 by 1 array: entered value is taken as the constant efficiency for forward and backward cases

${\mathrm{\eta }}_{1}$(${\mathrm{\omega }}_{R/C}$ ) =$\left({\mathrm{ω}}_{R/C}\right)$ =

 • 1 by 2 array: first entered value is taken as the constant efficiency for forward case and the second for backward cases

${\mathrm{η}}_{1}$(${\mathrm{\omega }}_{R/C}$ ) =(${\mathrm{\omega }}_{R/C}$ ) =

 • 1 by 3 array: first column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively.
 • n by 2 array: Second column is forward and backward efficiency

(${\mathrm{\omega }}_{R/C}$ ) = (${\mathrm{\omega }}_{R/C}$ ) = (${\mathrm{\omega }}_{R/C}$ )

 • n by 3 array:

Second column is forward efficiency

${\mathrm{\eta }}_{1}$ (${\mathrm{\omega }}_{R/C}$ )

Third column is backward efficiency

(${\mathrm{\omega }}_{R/C}$ )

meshinglossTable1

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = attachment

-

Defines the velocity dependent meshing efficiency

First column is angular velocity (${\mathrm{\omega }}_{R/C}$ )

(See $\left[{\mathrm{\eta }}_{R/\mathrm{P2}}\right]$ below)

data1

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = file

-

fileName1

$\left[{\mathrm{η}}_{R/P\mathrm{2}}\right]$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = attachment or file

$\left[2,3\right]$

-

Defines the corresponding data columns used for forward efficiency (${\mathrm{\eta }}_{1}$) and backward efficiency (${\mathrm{\eta }}_{2}$)

Two options are available:

 • 1 by 1 array:

Data column corresponding to the column number is used for both forward and backward efficiency (

 • 1 by 2 array:

Data column corresponding to the first column number is used for forward efficiency (${\mathrm{\eta }}_{1}$) and Data column corresponding to the second column number is used for backward efficiency (${\mathrm{\eta }}_{2}$)

columns1

${\mathrm{η}}_{P\mathrm{1}/S}\left({\mathrm{\omega }}_{S/C}\right)$${}$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = GUI



$\left[0,1,1\right]$

Defines Planet1/Sun velocity dependant meshing efficiency as a function of ${\mathrm{\omega }}_{S/C}$ .

The columns are:

[${\mathrm{\omega }}_{S/C}$     (${\mathrm{\eta }}_{1}$(${\mathrm{\omega }}_{S/C}$ )     ${\mathrm{\eta }}_{2}$(${\mathrm{\omega }}_{S/C}$ )]

First column is angular velocity of the sun gear w.r.t. carrier (${\mathrm{\omega }}_{S/C}$)

Five options are available:

 • 1 by 1 array: entered value is taken as the constant efficiency for forward and backward cases

${\mathrm{\eta }}_{1}$(${\mathrm{\omega }}_{S/C}$ ) =$\left({\mathrm{\omega }}_{S/C}\right)$ =

 • 1 by 2 array: first entered value is taken as the constant efficiency for forward case and the second for backward cases

${\mathrm{η}}_{1}$(${\mathrm{\omega }}_{S/C}$ ) =(${\mathrm{\omega }}_{S/C}$ ) =

 • 1 by 3 array: first column is ignored and the second and third values are taken as constant efficiencies for forward and backward cases, respectively
 • n by 2 array: Second column is forward and backward efficiency

(${\mathrm{\omega }}_{S/C}$ ) = (${\mathrm{\omega }}_{S/C}$ ) = (${\mathrm{\omega }}_{S/C}$ )

 • n by 3 array:

Second column is forward efficiency

${\mathrm{\eta }}_{1}$ (${\mathrm{\omega }}_{S/C}$ )

Third column is backward efficiency

(${\mathrm{\omega }}_{S/C}$ )

meshinglossTable2

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = attachment

-

Defines the velocity dependent meshing efficiency

First column is angular velocity (${\mathrm{\omega }}_{S/C}$ )

(See $\left[{\mathrm{\eta }}_{P/S}\right]$ below)

data2

$\mathrm{ideal}=\mathbit{false}$

same loss data = false

data source = file

-

fileName2

$\left[{\mathrm{η}}_{P\mathrm{1}/S}\right]$

$\mathrm{ideal}=\mathbf{false}$

same loss data = false

data source = attachment or file

$\left[2,3\right]$

-

Defines the corresponding data columns used for forward (${\mathrm{\eta }}_{1}$) and backward (${\mathrm{\eta }}_{2}$) efficiency

Two options are available:

 • 1 by 1 array:

Data column corresponding to the column number is used for both forward and backward efficiency (

 • 1 by 2 array:

Data column corresponding to the first column number is used for forward efficiency (${\mathrm{\eta }}_{1}$) and

Data column corresponding to the second column number is used for backward efficiency (${\mathrm{\eta }}_{2}$)

columns2

d

0

Linear damping in planets/carrier bearings

d

smoothness

$\mathrm{ideal}=\mathbf{false}$

Table points are linearly interpolated

-

Defines the smoothness of table interpolation

There are two options:

 • Table points are linearly interpolated
 • Table points are interpolated such that the first derivative is continuous

smoothness