calculate the observer gain for single-output or multiple-output systems - MapleSim Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : MapleSim Toolboxes : MapleSim Control Design Toolbox : ControlDesign Package : State Estimation : ControlDesign/StateObserver/PolePlacement

ControlDesign[StateObserver][PolePlacement] - calculate the observer gain for single-output or multiple-output systems

Calling Sequence

PolePlacement(Amat, Cmat, p)

PolePlacement(sys, p)

Parameters

Amat

-

Matrix; system matrix of a state-space system

Cmat

-

Matrix or Vector; output matrix of a state-space system

sys

-

System; a DynamicSystems system object of state-space format

p

-

list ; list of desired closed-loop poles (real or complex). Complex poles including those containing symbolic parameters must be given in complex conjugate pairs. All symbolic parameters in the list are assumed to be real.

Description

• 

The PolePlacement command calculates the static (Luenberger) observer gain for the multiple-output systems to put the observer error dynamics poles in the desired locations. The (Amat,Cmat) pair (or the sys object) must be controllable. The pole placement is performed using the Sylvester equation method if the system and observer error poles are disjoint and there are no symbolic parameters in the (Amat,Cmat) pair (or in the corresponding matrices in sys) and in p. The observer error system matrix is then Ac=AmatL.Cmat (or Ac = sys:-a-L.sys:-b) where L is the calculated observer gain. The algorithm detects if any of the system poles and desired observer error poles are the at the same position (or numerically too close) or if any symbolic parameters exists and switches to the cyclic method in such cases.

Examples

withControlDesign:

AmatMatrix0.9054,39.7500,22.4100,0.1891,0.7366,0.3734,77.0100,41.1600,4.1900,1.0450,0.2815,120.8000,63.6500,4.3650,2.1850,0.4264,2.2290,0.2781,0.0662,0.6509,0.5441,39.1800,21.8400,2.5120,0.8066

Amat:=0.905439.750022.41000.18910.73660.373477.010041.16004.19001.04500.2815120.800063.65004.36502.18500.42642.22900.27810.06620.65090.544139.180021.84002.51200.8066

(1)

CmatMatrix3,6,3,9,7,5,5,2,1,4,1,7,6,8,2

Cmat:=363975521417682

(2)

p4+2I,1,5.313,42I,3.25

p:=4+2I,1,5.313,42I,3.25

(3)

LStateObserver:-PolePlacementAmat,Cmat,p

L:=0.01377308817896170.4784599840375900.06287673278155050.001207460894715380.1615468471556580.02925427862894590.002405455172158500.2855497069971320.05110966821681010.002129472347748760.08253358172622350.01148740203151240.006035704572417940.1883268202546370.0232971793410450

(4)

AcAmatL.Cmat

Ac:=3.4018959175063941.784801319790921.78902116407720.9163316399006502.621098087839990.46721089709138276.399800949256041.31119040522184.596448224239660.4488689423722521.20457456871894119.71558641149963.92165777020995.081076149281041.128182322239980.004143727705876341.883967071502980.3806311683066190.1273980491080610.9729658292761111.5271383943314839.994768073320421.58502232181972.082974403865241.55556285434338

(5)

LinearAlgebra:-EigenvaluesAc;p

0.999999999999979+0.I4.00000000000302+2.00000000000143I4.000000000003022.00000000000143I3.25000000000042+0.I5.31299999999759+0.I

4+2I,1,5.313,42I,3.25

(6)

See Also

ControlDesign, ControlDesign[StateFeedback][Ackermann], ControlDesign[StateFeedback][PolePlacement], ControlDesign[StateObserver][Ackermann], LinearAlgebra[SylvesterSolve]

References

  

[1] T. Kailath, Linear Systems, Prentice-Hall, 1980.

  

[2] C. T. Chen, Linear System Theory and Design, 3rd Ed., Oxford University Press, 1999.


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam