Ziegler-Nichols frequency domain (closed-loop) identification - MapleSim Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : MapleSim Toolboxes : MapleSim Control Design Toolbox : ControlDesign Package : PID Tuning : ControlDesign/ParameterIdentify/FrequencyDomain

ControlDesign[ParameterIdentify][FrequencyDomain] - Ziegler-Nichols frequency domain (closed-loop) identification

Calling Sequence

FrequencyDomain(sys, opts)

Parameters

sys

-

System; a DynamicSystems system object in continuous-time domain; must be single-input single-output (SISO) and stable

opts

-

(optional) equation(s) of the form option = value; specify options for the FrequencyDomain command

Description

• 

The FrequencyDomain command performs the Ziegler-Nichols frequency domain (closed-loop) identification. It estimates the ultimate gain (Ku) and ultimate period (Tu) of the given system. The ultimate gain is the smallest positive gain for which the closed-loop system under unity negative feedback becomes oscillatory (marginally stable) and the ultimate period is the period of the corresponding oscillations. The method is only applicable to SISO open-loop stable systems. If the system has no symbolic parameters, the command returns a list of two positive-real floating-point numbers as [Ku,Tu] or returns an error if no solution exists. When the system has symbolic parameters, the ultimate gain and frequency are returned as symbolic expressions of the system parameters. The calculated results are theoretically valid for the parameter space on which the following conditions hold:

– 

The system is open-loop stable. The parametric stability condition can be obtained using the DynamicSystems[RouthTable] command with the stablecondition option set to true. For details see: DynamicSystems[RouthTable].

– 

The resulted algebraic expressions for Ku and Tu are evaluated to positive-real numbers for the numerical values of the system parameters. If more than one symbolic solution exist, multiple solutions are returned as a sequence of [Ku,Tu] pairs: [Ku1,Tu1], [Ku2,Tu2], ... . In this case, by definition, the smallest positive Ku (if exists) and its corresponding Tu, is the acceptable solution.

Examples

withControlDesignParameterIdentify:

sysDynamicSystems:-NewSystems2+3s3+2s2+s+1:

sys:-tf

s2+3s3+2s2+s+1

(1)

ultimateFrequencyDomainsys

ultimate:=0.5000000000,6.283185308

(2)

Kuultimate1;Tuultimate2

Ku:=0.5000000000

Tu:=6.283185308

(3)

sysDynamicSystems:-NewSystems2+as3+2s2+s+1:

sys:-tf

s2+as3+2s2+s+1

(4)

ultimateFrequencyDomainsys

ultimate:=11+a,2π

(5)

Kuultimate1;Tuultimate2

Ku:=11+a

Tu:=2π

(6)

sysDynamicSystems:-NewSystem3s+1s4+2s3+17s2+2.1s+1:

sys:-tf

3.s+1.s4+2.s3+17.s2+2.100000000s+1.

(7)

ultimateFrequencyDomainsys

ultimate:=10.17663019,1.555561040

(8)

Kuultimate1;Tuultimate2

Ku:=10.17663019

Tu:=1.555561040

(9)

evalfTu

1.555561040

(10)

sysDynamicSystems:-NewSystem3s+as4+2s3+17s2+bs+1:

sys:-tf

3s+as4+2s3+17s2+bs+1

(11)

ultimateFrequencyDomainsys

ultimate:=29a13b+173+194a2+12ab204a+2565,π23a4a2+12ab204a+25652a23ab+51a+9512a+4a2+12ab204a+2565,29a13b+173194a2+12ab204a+2565,π23a4a2+12ab204a+2565+2a2+3ab51a951+2a+4a2+12ab204a+2565

(12)

ultimateevalultimate,a=1,b=2.1[]

ultimate:=10.17663019,0.635055135623,0.687741301,18.9163101723

(13)

Kuultimate11;Tuultimate12

Ku:=10.17663019

Tu:=0.635055135623

(14)

evalfTu

1.555561041

(15)

sysDynamicSystems:-NewSystems2+4.5s4+0.5s3+21s2+s+1:

sys:-tf

s2+4.500000000s4+0.5000000000s3+21.s2+s+1.

(16)

ultimateFrequencyDomainsys

ultimate:=14.79999999,4.442882940

(17)

sysDynamicSystems:-NewSystems2+as4+0.5s3+21s2+bs+c:

sys:-tf

s2+as4+0.5000000000s3+21.s2+bs+c

(18)

ultimateFrequencyDomainsys

ultimate:=4b242b+ca2b,π2b

(19)

DynamicSystems:-RouthTabledenomsys:-tf1,1,s,stablecondition=true

0<cand0<212band0<2bc212b

(20)

ultimateevalultimate&comma;a&equals;4.5&comma;b&equals;1&comma;c&equals;1

ultimate:=14.80000000&comma;&pi;2

(21)

See Also

ControlDesign, ControlDesign[ParameterIdentify][TimeDomain], DynamicSystems[RouthTable], simplify

References

  

[1] K. J. Astrom and T. Hagglund, Advanced PID Control, ISA, 2006.

  

[2] A. O'Dwyer, Handbook of PI and PID Controller Tuning Rules, 2nd Edition, Imperial College Press, 2006.


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam