plots - Maple Programming Help

Home : Support : Online Help : System : Libraries and Packages : Deprecated Packages and Commands : Deprecated commands : plots/animate3d(deprecated)

plots

 animate3d
 create an animation of 3-D plots of functions

 Calling Sequence animate3d(F, x, y, t)

Parameters

 F - function(s) to be plotted x - x axis range y - y axis range t - frame parameter range

Description

 • Important: The animate3d command has been deprecated. Use the superseding command plots[animate], which can generate both 2-D and 3-D animations, instead.
 • A typical call to the animate3d function is animate3d(F(x, y, t), x=a..b, y=c..d, t=p..q, where F is a real function in x, y, and t, and $a..b$ and $c..d$ specifies the range on which F is plotted while $p..q$ specifies how the frame coordinate varies from one frame to the next.
 • The animate3d function provides support for three-dimensional plots of one or more functions specified as expressions, procedures, or parametric functions. (When animating a procedure, operator notation must be used.) See plot/function for more information on plotting functions.  For two-dimensional animation, see animate.  A call to animate3d produces a PLOT3D data structure, which is then printed.  For information on the PLOT3D data structure, see plot3d/structure.
 • Range arguments define the axis labels and the range over which the function(s) are displayed.  They take one of the following forms:  string, low..hi, or string=low..hi, where low and hi are real constants.  See plot/range for further information.
 • Remaining arguments are interpreted as options which are specified as equations of the form option = value.  In particular, the frames option allows one to specify the number of frames to be displayed.  The default is 8.  The rest of the options are the same as those available for the plot3d command. For example, one can specify alternate coordinate systems such as spherical or cylindrical, various coloring schemes including a two dimensional coloring function to individual frames. See plot3d/option for further information.
 • It is also possible to create an animation from individual 3-D plots by using the display function and the insequence option. In particular, this is useful when you have discrete sets of points you wish to animate.
 • For information on viewing animations, see Overview of Animation Menu.
 • Note that one can save animations as an animated GIF file.  See plot/device for further information on producing GIF files.
 • Setting the global variable plotdevice (via the interface command) to one of the values listed under plot[device] controls the type of plots which will be produced.
 • animate3d may be defined by with(plots) or with(plots[animate3d]). It can also be used by the name plots[animate3d].

Examples

Important: The animate3d command has been deprecated. Use the superseding command plots[animate], which can generate both 2-D and 3-D animations, instead.

 > $\mathrm{with}\left(\mathrm{plots}\right):$
 > $\mathrm{animate3d}\left(\mathrm{cos}\left(tx\right)\mathrm{sin}\left(ty\right),x=-\mathrm{π}..\mathrm{π},y=-\mathrm{π}..\mathrm{π},t=1..2\right)$
 > $\mathrm{animate3d}\left(x\mathrm{cos}\left(tu\right),x=1..3,t=1..4,u=2..4,\mathrm{coords}=\mathrm{spherical}\right)$
 > $\mathrm{animate3d}\left({1.3}^{x}\mathrm{sin}\left(uy\right),x=-1..2\mathrm{π},y=0..\mathrm{π},u=1..8,\mathrm{coords}=\mathrm{spherical}\right)$
 > $\mathrm{animate3d}\left(\mathrm{sin}\left(x\right)\mathrm{cos}\left(tu\right),x=1..3,t=1..4,u=\frac{1}{4}..\frac{7}{2},\mathrm{coords}=\mathrm{cylindrical}\right)$
 > $\mathrm{animate3d}\left(\left[xu,t-u,x\mathrm{cos}\left(tu\right)\right],x=1..3,t=1..4,u=2..4\right)$
 > $\mathrm{animate3d}\left(\left[x,y,{1.3}^{x}\mathrm{sin}\left(uy\right)\right],x=1..3,y=1..4,u=1..2,\mathrm{coords}=\mathrm{spherical}\right)$
 > $\mathrm{animate3d}\left(\left[xu,ut,x\mathrm{cos}\left(tu\right)\right],x=1..3,t=1..4,u=2..4,\mathrm{coords}=\mathrm{cylindrical}\right)$
 > $\mathrm{animate3d}\left(\mathrm{cos}\left(tx\right)\mathrm{sin}\left(ty\right),x=-\mathrm{π}..\mathrm{π},y=-\mathrm{π}..\mathrm{π},t=1..2,\mathrm{color}=\mathrm{cos}\left(xy\right)\right)$