Ellipsoidal ODEs - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Classifying ODEs : Second Order : odeadvisor/ellipsoidal

Ellipsoidal ODEs

Description

• 

The general form of the ellipsoidal ODE is given by the following:

with(DEtools,odeadvisor);

odeadvisor

(1)

ellipsoidal_ode := diff(y(x),x,x) = (a+b*k^2*sin(x)^2+q*k^4*sin(x)^4)*y(x);

ellipsoidal_ode:=ⅆ2ⅆx2yx=a+bk2sinx2+qk4sinx4yx

(2)

odeadvisor(ellipsoidal_ode);

_ellipsoidal

(3)
  

See Arscott, "The Land Beyond Bessel: A Survey of Higher Special Functions".

See Also

DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear, sym_Fx, linear_sym, Bessel, Painleve, Halm, Gegenbauer, Duffing, ellipsoidal, elliptic, erf, Emden, Jacobi, Hermite, Lagerstrom, Laguerre, Liouville, Lienard, Van_der_Pol, Titchmarsh; for other differential orders see odeadvisor,types.


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam