integer factorization in Z(sqrt(2)) - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : Numbers : Integer Functions : numtheory/sq2factor

numtheory[sq2factor] - integer factorization in Z(sqrt(2))

Calling Sequence

sq2factor(z)

Parameters

z

-

integer, list or set of integers in Z2

Description

• 

The sq2factor function returns the integer factorization of z.

• 

All integers of Z2 have the form a+b2, where a and b are rational integers.

• 

The answer is in the form: ±1uf1e1...fnen such that z=±1uf1e1fnen where f1,,fn are distinct prime factors of z, e1,,en are non-negative integer numbers, u is a unit in Z2 and is represented under the form wn or w&conjugate0;n or wn or w&conjugate0;n where w is the fundamental unit (i.e, w=1+2), and n is a non-negative integer.

• 

The expand function may be applied to cause the factors to be multiplied together again.

• 

The command with(numtheory,sq2factor) allows the use of the abbreviated form of this command.

Examples

withnumtheory:

sq2factor124

1+24

(1)

sq2factor83424959

9503+18552950318552

(2)

expand

83424959

(3)

sq2factor92329322

251+21+325+217+592

(4)

expand

92329322

(5)

See Also

expand, GaussInt[GIfactor], ifactor


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam