geom3d - Maple Help

Home : Support : Online Help : Mathematics : Geometry : 3-D Euclidean : Duality : geom3d/faces

geom3d

 faces
 return the faces of a polyhedron

 Calling Sequence faces(obj)

Parameters

 obj - polyhedron

Description

 • The routine faces returns the faces of the given polyhedron.
 • Each face is represented as a list of coordinates of its vertices which are listed in counter-clockwise order as viewed from outside the polyhedron.
 • The command with(geom3d,faces) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{geom3d}\right):$

Define a tetrahedron with center (0,0,0), radius of the circum-sphere 2

 > $\mathrm{tetrahedron}\left(t,\mathrm{point}\left(o,0,0,0\right),2\right)$
 ${t}$ (1)
 > $\mathrm{faces}\left(t\right)$
 $\left[\left[\left[\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}\right]{,}\left[\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}\right]{,}\left[{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}\right]\right]{,}\left[\left[\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}\right]{,}\left[{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}\right]{,}\left[\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}\right]\right]{,}\left[\left[\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}\right]{,}\left[{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}\right]{,}\left[{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}\right]\right]{,}\left[\left[\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}\right]{,}\left[{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}\right]{,}\left[{-}\frac{{2}}{{3}}{}\sqrt{{3}}{,}\frac{{2}}{{3}}{}\sqrt{{3}}{,}{-}\frac{{2}}{{3}}{}\sqrt{{3}}\right]\right]\right]$ (2)