geom3d - Maple Programming Help

Home : Support : Online Help : Mathematics : Geometry : 3-D Euclidean : Duality : geom3d/center

geom3d

 center
 find the center of a given geometric object

 Calling Sequence center(cn, c)

Parameters

 cn - (optional) name c - sphere, polyhedron

Description

 • The routine returns the name of the center of the given sphere, or polyhedron c.
 • If c is a stellated polyhedron (i.e., geom3d[IsStellated](c) returns true), center(c); returns the center of the core of the given stellated polyhedron.
 • if c is a facetted polyhedron (i.e., geom3d[IsFacetted](c); returns true), center(c); returns the center of the case of the given facetted polyhedron.
 • If the first optional argument cn is given, the name of the center c becomes cn.
 • Use coordinates or detail for more details on the center.
 • The command with(geom3d,center) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{geom3d}\right):$

Define a sphere

 > $\mathrm{sphere}\left(s,{x}^{2}+{y}^{2}+{z}^{2}+x+y+z-3=0,\left[x,y,z\right],'\mathrm{centername}'=o\right)$
 ${s}$ (1)
 > $\mathrm{center}\left(s\right)$
 ${o}$ (2)
 > $\mathrm{coordinates}\left(\right)$
 $\left[{-}\frac{{1}}{{2}}{,}{-}\frac{{1}}{{2}}{,}{-}\frac{{1}}{{2}}\right]$ (3)
 > $\mathrm{center}\left(\mathrm{o1},s\right)$
 ${\mathrm{o1}}$ (4)
 > $\mathrm{center}\left(s\right)$
 ${\mathrm{o1}}$ (5)
 > $\mathrm{coordinates}\left(\right)$
 $\left[{-}\frac{{1}}{{2}}{,}{-}\frac{{1}}{{2}}{,}{-}\frac{{1}}{{2}}\right]$ (6)