difforms - Maple Help

Home : Support : Online Help : Mathematics : Differential Equations : Differential Forms : difforms/simpform

difforms

 simpform
 simplify an expression involving forms

 Calling Sequence simpform(expr)

Parameters

 expr - Maple expression

Description

 • The function simpform will simplify an expression involving forms.  Its operations include collecting like terms, simplifying wedge products, and pulling out scalar factors.
 • The command with(difforms,simpform) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{difforms}\right):$$\mathrm{defform}\left(f=\mathrm{scalar},g=\mathrm{scalar}\right)$
 > $\left(fv\right)&^u+u&^\left(gv\right)$
 ${f}{}{v}{&^}{u}{+}{g}{}{u}{&^}{v}$ (1)
 > $\mathrm{simpform}\left(\right)$
 $\left({f}{+}{\left({-}{1}\right)}^{{\mathrm{wdegree}}{}\left({u}\right){}{\mathrm{wdegree}}{}\left({v}\right)}{}{g}\right){}{v}{&^}{u}$ (2)
 > $f\left(u&^v+u&^w\right)+gu&^v$
 ${f}{}\left({u}{&^}{v}{+}{u}{&^}{w}\right){+}{g}{}{u}{&^}{v}$ (3)
 > $\mathrm{simpform}\left(\right)$
 $\left({f}{+}{g}\right){}{u}{&^}{v}{+}{f}{}{u}{&^}{w}$ (4)