diffalg[power_series_solution]  expand the nonsingular zero of a characterizable differential ideal into integral power series

Calling Sequence


power_series_solution (point, order, J, 'syst', 'params')


Parameters


point



list or set of names or equations

order



nonnegative integer

J



characterizable differential ideal

syst



(optional) name

params



(optional) name





Description


•

The function power_series_solution computes a formal integral power series solution of the differential system equations , inequations . Such a system is formally integrable. See the last example below.


If point is a singular point of equations (J), then power_series_solution returns FAIL. Nevertheless, this does not mean that no formal power series solution exists at that point.

•

When point is not singular, the series is truncated at the order given by the parameter order. They could be expanded up to any order, though convergence is not guaranteed.

•

The series involve parameters corresponding to initial conditions to be given.


The parameters appear as u, where u is a differential indeterminate if it represents the value of the solution at point, or _Cu_x, where x is some derivation variable, if it represents the value of the value of the first derivative of according to x at point.


The parameters must satisfy a triangular system of polynomial equations and inequations given by syst in terms of the parameters involved in the power series solution.


If present, the variable params receives the subset of the parameters involved in the power series solution that can almost be chosen arbitrarily if not for some inequations in syst.

•

If J is a radical differential ideal represented by a list of characterizable differential ideals, the function power_series_solution is mapped on its component.

•

The command with(diffalg,power_series_solution) allows the use of the abbreviated form of this command.



Examples


Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
>


>


 (1) 
>


 (2) 
>


 (3) 
>


 (4) 
>


 (5) 
>


 (6) 
>


 (7) 
>


 (8) 
Let us explain now why, in general, we have to start from a characterizable differential system instead of any differential system. Consider the differential system given by these two differential polynomials.
>


>


 (9) 
We are looking for a solution starting as:
>


 (10) 
It seems that we can choose an initial condition () and that, by differentiating the equations, all the coefficients in the expansion can be expressed in terms of .
The first terms do not lead to any problem:
>


 (11) 
To compute the next term we can either differentiate or . The problem is that the results obtained are not compatible.
>


 (12) 
>


 (13) 
The system is not formally integrable as it stands. The only solution of the system is:
>


 (14) 
>


 (15) 
>


 (16) 


Download Help Document
Was this information helpful?