convert/elementary - Maple Programming Help

Home : Support : Online Help : Programming : Data Types : Conversion : convert/elementary

convert/elementary

convert special functions in an expression into elementary functions

 Calling Sequence convert(expr, elementary)

Parameters

 expr - Maple expression, equation, or a set or list of them

Description

 • convert/elementary converts, when possible, the special functions in an expression into elementary transcendental functions. The elementary transcendental functions are
 The 26 functions in the "elementary" class are:
 $\left[{\mathrm{arccos}}{,}{\mathrm{arccosh}}{,}{\mathrm{arccot}}{,}{\mathrm{arccoth}}{,}{\mathrm{arccsc}}{,}{\mathrm{arccsch}}{,}{\mathrm{arcsec}}{,}{\mathrm{arcsech}}{,}{\mathrm{arcsin}}{,}{\mathrm{arcsinh}}{,}{\mathrm{arctan}}{,}{\mathrm{arctanh}}{,}{\mathrm{cos}}{,}{\mathrm{cosh}}{,}{\mathrm{cot}}{,}{\mathrm{coth}}{,}{\mathrm{csc}}{,}{\mathrm{csch}}{,}{\mathrm{exp}}{,}{\mathrm{ln}}{,}{\mathrm{sec}}{,}{\mathrm{sech}}{,}{\mathrm{sin}}{,}{\mathrm{sinh}}{,}{\mathrm{tan}}{,}{\mathrm{tanh}}\right]$ (1)

Examples

 > $\mathrm{hypergeom}\left(\left[3\right],\left[4\right],9{x}^{\frac{1}{6}}\right)$
 ${\mathrm{hypergeom}}{}\left(\left[{3}\right]{,}\left[{4}\right]{,}{9}{}{{x}}^{{1}{/}{6}}\right)$ (2)
 > $\mathrm{convert}\left(,\mathrm{elementary}\right)$
 $\frac{{1}}{{243}}{}\frac{\left({2}{-}{18}{}{{x}}^{{1}{/}{6}}{+}{81}{}{{x}}^{{1}{/}{3}}\right){}{{ⅇ}}^{{9}{}{{x}}^{{1}{/}{6}}}}{\sqrt{{x}}}{-}\frac{{2}}{{243}{}\sqrt{{x}}}$ (3)
 > $\mathrm{WhittakerM}\left(0,\frac{1}{2},z\right)$
 ${\mathrm{WhittakerM}}{}\left({0}{,}\frac{{1}}{{2}}{,}{z}\right)$ (4)
 > $\mathrm{convert}\left(,\mathrm{elementary}\right)$
 ${-}{2}{}{I}{}{\mathrm{sin}}{}\left(\frac{{1}}{{2}}{}{I}{}{z}\right)$ (5)
 > $\mathrm{WhittakerM}\left(\mathrm{μ},\mathrm{ν},0\right)$
 ${\mathrm{WhittakerM}}{}\left({\mathrm{μ}}{,}{\mathrm{ν}}{,}{0}\right)$ (6)
 > $\mathrm{convert}\left(,\mathrm{elementary}\right)$
 ${0}$ (7)
 > $\mathrm{Ei}\left(-1,z\right)$
 ${\mathrm{Ei}}{}\left({-}{1}{,}{z}\right)$ (8)
 > $\mathrm{convert}\left(,\mathrm{elementary}\right)$
 $\frac{{{ⅇ}}^{{-}{z}}{}\left({1}{+}{z}\right)}{{{z}}^{{2}}}$ (9)