convert/Bessel_related - Maple Programming Help

Home : Support : Online Help : Mathematics : Conversions : Function Class : convert/Bessel_related

convert/Bessel_related

convert special functions admitting 1F1 or 0F1 hypergeometric representation into Bessel related functions

 Calling Sequence convert(expr, Bessel_related)

Parameters

 expr - Maple expression, equation, or a set or list of them.

Description

 • convert/Bessel_related converts, when possible, special functions admitting a 1F1 or 0F1 hypergeometric representation into Bessel related functions. The Bessel related functions are
 The 14 functions in the "Bessel_related" class are:
 $\left[{\mathrm{AiryAi}}{,}{\mathrm{AiryBi}}{,}{\mathrm{BesselI}}{,}{\mathrm{BesselJ}}{,}{\mathrm{BesselK}}{,}{\mathrm{BesselY}}{,}{\mathrm{HankelH1}}{,}{\mathrm{HankelH2}}{,}{\mathrm{KelvinBei}}{,}{\mathrm{KelvinBer}}{,}{\mathrm{KelvinHei}}{,}{\mathrm{KelvinHer}}{,}{\mathrm{KelvinKei}}{,}{\mathrm{KelvinKer}}\right]$ (1)

Examples

 > $\frac{1{z}^{a}\mathrm{hypergeom}\left(\left[\right],\left[1+a\right],-\frac{1{z}^{2}}{4}\right)}{\mathrm{Γ}\left(1+a\right){2}^{a}}$
 $\frac{{{z}}^{{a}}{}{\mathrm{hypergeom}}{}\left(\left[{}\right]{,}\left[{1}{+}{a}\right]{,}{-}\frac{{1}}{{4}}{}{{z}}^{{2}}\right)}{{\mathrm{Γ}}{}\left({1}{+}{a}\right){}{{2}}^{{a}}}$ (2)
 > $\mathrm{convert}\left(,\mathrm{Bessel_related}\right)$
 ${\mathrm{BesselJ}}{}\left({a}{,}{z}\right)$ (3)
 > $\mathrm{LaguerreL}\left(-\frac{1}{2}-a,2a,2Iz\right)-\mathrm{WhittakerM}\left(0,a,2Iz\right)$
 ${\mathrm{LaguerreL}}{}\left({-}\frac{{1}}{{2}}{-}{a}{,}{2}{}{a}{,}{2}{}{I}{}{z}\right){-}{\mathrm{WhittakerM}}{}\left({0}{,}{a}{,}{2}{}{I}{}{z}\right)$ (4)
 > $\mathrm{convert}\left(,\mathrm{Bessel_related}\right)$
 $\frac{{\mathrm{binomial}}{}\left({a}{-}\frac{{1}}{{2}}{,}{-}\frac{{1}}{{2}}{-}{a}\right){}{{ⅇ}}^{{I}{}{z}}{}{\mathrm{Γ}}{}\left({1}{+}{a}\right){}{\mathrm{BesselJ}}{}\left({a}{,}{z}\right){}{{2}}^{{a}}}{{{z}}^{{a}}}{-}\frac{{\left({2}{}{I}{}{z}\right)}^{\frac{{1}}{{2}}{+}{a}}{}{\mathrm{Γ}}{}\left({1}{+}{a}\right){}{\mathrm{BesselJ}}{}\left({a}{,}{z}\right){}{{2}}^{{a}}}{{{z}}^{{a}}}$ (5)
 > $\mathrm{KummerU}\left(a+\frac{1}{2},2a+1,z\right)$
 ${\mathrm{KummerU}}{}\left(\frac{{1}}{{2}}{+}{a}{,}{2}{}{a}{+}{1}{,}{z}\right)$ (6)
 > $\mathrm{convert}\left(,\mathrm{Bessel_related}\right)$
 $\frac{\sqrt{{\mathrm{π}}}{}{{ⅇ}}^{\frac{{1}}{{2}}{}{z}}{}\left({-}\frac{{1}}{{4}}{}\frac{{\mathrm{BesselJ}}{}\left({-}{a}{,}\frac{{1}}{{2}}{}{I}{}{z}\right){}{\left(\frac{{1}}{{2}}{}{I}{}{z}\right)}^{{a}}{}{{2}}^{{2}{}{a}{+}{1}}}{{{z}}^{{2}{}{a}}{}{{2}}^{{a}}}{+}\frac{{1}}{{4}}{}\frac{{\mathrm{BesselJ}}{}\left({a}{,}\frac{{1}}{{2}}{}{I}{}{z}\right){}{{2}}^{{a}}}{{\left(\frac{{1}}{{2}}{}{I}{}{z}\right)}^{{a}}{}{{2}}^{{2}{}{a}{-}{1}}}\right)}{{\mathrm{sin}}{}\left({\mathrm{π}}{}\left({1}{+}{a}\right)\right)}$ (7)
 > $\mathrm{MeijerG}\left(\left[\left[\right],\left[\right]\right],\left[\left[\frac{1a}{2}\right],\left[-\frac{1a}{2}\right]\right],z\right)$
 ${\mathrm{MeijerG}}{}\left(\left[\left[{}\right]{,}\left[{}\right]\right]{,}\left[\left[\frac{{1}}{{2}}{}{a}\right]{,}\left[{-}\frac{{1}}{{2}}{}{a}\right]\right]{,}{z}\right)$ (8)
 > $\mathrm{convert}\left(,\mathrm{Bessel_related}\right)$
 $\frac{{{z}}^{\frac{{1}}{{2}}{}{a}}{}{\mathrm{BesselJ}}{}\left({a}{,}{2}{}\sqrt{{z}}\right){}{{2}}^{{a}}}{{\left({2}{}\sqrt{{z}}\right)}^{{a}}}$ (9)