second order Eulerian numbers - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Discrete Mathematics : Combinatorics : combinat : combinat/eulerian2

combinat[eulerian2] - second order Eulerian numbers

Calling Sequence

eulerian2(n, k)

Parameters

n, k

-

non-negative integers

Description

• 

The eulerian2(n, k) command counts the number of permutations pi1pi2`...`pi2n of the multi-set 1,1,2,2,...,n,n having two properties:

1. 

All numbers between the two occurrences of m are greater than m.

2. 

There are k ascents, namely, k places where pij<pij+1.

• 

This function can be computed via the recurrence

eulerian2n&comma;k&equals;k&plus;1eulerian2n1&comma;k&plus;2nk1eulerian2n1&comma;k1

• 

Second-order Eulerian numbers are important because of their connection with Stirling numbers. For integers m and 0n we have:

Stirling2m&comma;mn&equals;k&equals;0neulerian2n&comma;kbinomialm&plus;n1k&comma;2n

  

Stirling1m&comma;mn = 1nStirling1m&comma;mn = k&equals;0neulerian2n&comma;kbinomialm&plus;k&comma;2n

Examples

withcombinat&colon;

Matrixseqseqeulerian2n&comma;k&comma;k&equals;0..5&comma;n&equals;0..5

1000001000001200001860001225824001523284441200

(1)

See Also

combinat, combinat[eulerian1], euler, Stirling1, Stirling2

References

  

R.L. Graham, D.E. Knuth, O. Patashnik, "Concrete Mathematics", Addison-Wesley, Reading, Mass., 1989.


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam