plot a curve or surface defined by a position Vector - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Vector Calculus : VectorCalculus/PlotPositionVector

VectorCalculus[PlotPositionVector] - plot a curve or surface defined by a position Vector

Calling Sequence

PlotPositionVector(pv)

PlotPositionVector(pv, r)

PlotPositionVector(pv,r, options1)

PlotPositionVector(pv, r1,r2)

PlotPositionVector(pv,r1,r2, options2)

Parameters

pv

-

'Vector'(algebraic); the position Vector representing a curve or surface

r

-

range or name=range; the range of the parameter of the curve

r1

-

name=range; the range of one of the parameters of the surface

r2

-

name=range; the range of one of the parameters of the surface

options1

-

(optional) curve options, equation(s) of the form keyword = value, where keyword is either 'points', 'vectorfield', 'vectorfieldoptions', 'pvdiff', 'diffoptions', 'tangent', 'tangentoptions', 'normal', 'normaloptions', 'binormal', 'binormaloptions' or 'curveoptions'

options2

-

(optional) surface options, equation(s) of the form keyword = value, where keyword is either 'points', 'pointoptions', , 'coordcurve', 'curveoptions', 'pvdiff', 'diffoptions', 'normal', 'normaloptions', 'normalfield', 'normalfieldoptions', 'normalorientation', 'vectorfield', 'vectorfieldoptions', or 'surfaceoptions'

Description

• 

The PlotPositionVector command plots a curve or surface defined by a two or three dimensional position Vector. For a curve, the plot can be in two or three dimensional space.

• 

The first argument pv is a position Vector. The components of the position Vector represent the parametric description of the curve or surface in Cartesian coordinates. For more information about position Vectors, see PositionVector.

– 

If the position Vector has one parameter it is assumed to represent a curve.

– 

If the position Vector has two parameters and three components it is assumed to represent a surface. If the position Vector has two parameters and two components it is assumed to represent unevaluated curves.

– 

If the position Vector has no indeterminates, a single Vector rooted at the origin is plotted.

• 

Given a position Vector with one parameter representing a curve, the range r is specified in the form param = a..b or a..b. Given a position Vector with two parameters and three dimensions representing a surface, the ranges r1 and r2 are specified in the form param1=a..b and param2=c..d respectively. Given a position Vector with two parameters and two components, one parameter has to be assigned a specific value and the other must be a range of the form param = a..b.

• 

The options1 and options2 arguments control extra structures that can be added to the plot of the curve and surface as well as providing plot options for specific elements of the plot. Additional plot options, as described on the plot/option and plot3d/option help pages, that are applicable may also be provided.

Examples

withVectorCalculus:

Position Vectors

pv1:=PositionVector1,2,3,cartesianx,y,z

pv1:=123

(1)

PlotPositionVectorpv1

• 

Specify the range of the parameter.

R1:=PositionVectorp,p2,polarr,t

R1:=pcosp2psinp2

(2)

PlotPositionVectorR1,p=1..2

R2:=PositionVectorv,v,polarr,θ

R2:=vcosvvsinv

(3)

PlotPositionVectorR2,0..3π

Display tangent vectors on the curve.

PlotPositionVectorR2,v=0..3π,tangent=true

Evaluate a vector field on the curve.

VF1:=VectorFieldx,y,cartesianx,y

VF1:=xe_xye_y

(4)

PlotPositionVectorR2,v=0..3π,vectorfield=VF1

Display the tangent, principal normal and binormal vectors on a curve.

R3:=PositionVector1,π2+arctan1t2,t,spherical

R3:=2costt2+42sintt2+4tt2+4

(5)

PlotPositionVectorR3,t=0..4π

PlotPositionVectorR3,t=0..4π,tangent=true,normal=true,binormal=true

R4:=PositionVector1,p,p,cylindricalr,p,s

R4:=cospsinpp

(6)

Specify points on the curve for plotting other structures.

PlotPositionVectorR4,p=0..4π,tangent=true,points=π

PlotPositionVectorR4,p=0..4π,tangent=true,normal=true,binormal=true,points=π,π2

Two dimensional position Vectors with two parameters.

pv2:=PositionVectorp,q,polarr,t

pv2:=pcosqpsinq

(7)

Provide numeric value of one of the parameters.

PlotPositionVectorpv2,p=1..2,q=π2

PlotPositionVectorpv2,p=2,q=0..π

The commands to create the plots from the Plotting Guide are

PlotPositionVectorR2,v=0..3π,tangent=true,pvdiff=v

VF2:=VectorFieldr,0,0,sphericalr,p,t

VF2:=re_r

(8)

PlotPositionVectorR3,t=0..4π,vectorfield=VF2,vectornum=6

Surfaces

S1:=PositionVectort,v1+t2,vt1+t2,cartesianx,y,z

S1:=tvt2+1vtt2+1

(9)

PlotPositionVectorS1,t=3..3,v=3..3

Specify points on the surface.

PlotPositionVectorS1,t=3..3,v=3..3,points=0,0,1,1,2,2,3,3

Visualize tangent vectors along coordinate curves.

PlotPositionVectorS1,t=3..3,v=3..3,pvdiff=t,v

PlotPositionVectorS1,t=3..3,v=3..3,vectorfield=VectorFieldx,y,0,cartesianx,y,z,vectorgrid=3,3

Visualize the normal field of a given vector field.

PlotPositionVectorS1,t=3..3,v=3..3,vectorfield=VectorFieldx,y,0,cartesianx,y,z,normalfield=true

 

S2:=PositionVector1,p,q,toroidalr,φ,θ

S2:=sinhpcosqcoshpcos1sinhpsinqcoshpcos1sin1coshpcos1

(10)

Display a coordinate curve on a surface.

PlotPositionVectorS2,p=0..2π,q=0..2π,coordcurve=p=π2,vectorfield=VectorFieldr,0,0,sphericalr,φ,θ

The command to create the plot from the Plotting Guide is

PlotPositionVectorS2,p=0..2π,q=0..2π,vectorfield=VectorFieldr,0,0,sphericalr,φ,θ,surfaceoptions=color=red,vectorgrid=3,3

See Also

plot/option, plot3d/option, VectorCalculus, VectorCalculus[Binormal], VectorCalculus[diff], VectorCalculus[eval], VectorCalculus[PositionVector], VectorCalculus[PrincipalNormal], VectorCalculus[RootedVector], VectorCalculus[TangentVector]


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam