Trigonometric and Hyperbolic Functions in the Natural Units Environment - Maple Help

Home : Support : Online Help : Science and Engineering : Units : Environments : Natural : Units/Natural/trig

Trigonometric and Hyperbolic Functions in the Natural Units Environment

Description

 • In the Natural Units environment, the arguments for the trigonometric or hyperbolic functions can be unit-free, in which case the argument is assumed to be given in terms of radians, or multiplied by a unit of angle with the dimension length/length(radius).  An error is returned if the dimension of the argument is not an angle.
 • If the argument has a unit of angle, it is converted to a free expression in the call to the corresponding global function.  Therefore, a call to sin(7*deg) returns as sin(7/180*Pi), because $1$ degree equals $\frac{\mathrm{\pi }}{180}$ radians.
 • For other properties, see the global functions in the trig help page.

Examples

 > $\mathrm{with}\left(\mathrm{Units}[\mathrm{Natural}]\right):$
 > $\mathrm{sin}\left(3\mathrm{deg}\right)$
 ${\mathrm{sin}}{}\left(\frac{{1}}{{60}}{}{\mathrm{π}}\right)$ (1)
 > $\mathrm{sin}\left(180\mathrm{deg}\right)$
 ${0}$ (2)
 > $\mathrm{cos}\left(172.\mathrm{deg}+40.\mathrm{arcmin}+10.32\mathrm{arcsec}\right)$
 ${-}{0.9918267366}$ (3)