SumTools - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Discrete Mathematics : Summation and Difference Equations : SumTools : SumTools/Summation

SumTools

  

Summation

  

compute closed forms of definite and indefinite sums

  

DefiniteSummation

  

compute closed forms of definite sums

  

IndefiniteSummation

  

compute closed forms of indefinite sums

 

Calling Sequence

Parameters

Options

Description

Examples

Calling Sequence

Summation(f, k)

Summation(f, k=m..n, parametric)

Summation(f, k=alpha)

Summation(f, expr)

DefiniteSummation(f, k=m..n, parametric)

DefiniteSummation(f, k=alpha)

DefiniteSummation(f, k=expr)

IndefiniteSummation(f, k)

Parameters

f

-

expression; specified summand

k

-

name; summation index

m, n

-

integers or expressions

parametric

-

(optional) literal name

alpha

-

RootOf expression

expr

-

expression not containing k

Options

• 

If the option parametric is specified for a definite sum, then a result is returned that is valid for all possible integer values of any parameters occurring in the summand or the summation bounds. In general, the result is expressed in terms of piecewise functions.

Description

• 

The IndefiniteSummation(f, k) command computes a closed form of the indefinite sum of f with respect to k, that is, it finds a function gk such that gk+1gk=fk.

• 

The DefiniteSummation(f, k=m..n) command computes a closed form of the definite sum of fk over the specified range m..n.

  

For notational convenience, there are two special cases:

  

- The DefiniteSummation(f, k=alpha) command, where alpha is a RootOf structure, computes the definite sum of fk over the index of the specified RootOf

  

- The DefiniteSummation(f, k=expr) command is used for function evaluation at a specified point. This is an equivalence of eval(f, k=expr).

• 

The Summation(f, ...) command is the combination of DefiniteSummation and IndefiniteSummation commands.

  

For a specified summation problem give to Summation, there is a preprocess that classifies whether the summation is a definite or indefinite sum.  It then calls either IndefiniteSummation or DefiniteSummation as appropriate.

• 

If Summation, IndefiniteSummation, or DefiniteSummation fails to compute a closed form, the unevaluated sum returns.

  

Note: The sum routine recognizes various resummation methods and thus is able to give the 'correct' value for various classes of divergent sums. If the environment variable _EnvFormal is set to true, sum uses this technique.

  

If _EnvFormal is set to false, then Maple tries harder to determine whether the given definite sum is divergent and returns infinity, -infinity, or unevaluated in that case. Note that this may slow down the computation.

  

In that case, Maple also tries to recognize removable singularities in the summation interval.

  

By default, _EnvFormal is unassigned.

• 

For more information, see sum,details.

Examples

withSumTools:

Two examples of indefinite sums.

Example 1.

Fbinomialn2+k,k2k

F:=binomial12n+k,k2k

(1)

kF=IndefiniteSummationF,n

kbinomial12n+k,k2k=12nbinomial12n+k,k2kk+1+12n+1binomial12n+12+k,k2kk+1

(2)

Example 2.

Fn2binomial2n,nn2+3n+2

F:=n2binomial2n,nn2+3n+2

(3)

nF=IndefiniteSummationF,n

nn2binomial2n,nn2+3n+2=42n1_i=1n112_i+12_i+1n+1n+nn214n+8_i=1n1_i4_i+22n+2

(4)

Examples of definite sums:

Example 1.

Fbinomial2n+1,2k2

F:=binomial2n+1,2k2

(5)

k=0nF=DefiniteSummationF,k=0..n

k=0nbinomial2n+1,2k2=2Γ2n+12n4n+22n322Γ2n+12Γn+1Γn+32

(6)

Example 2.

F22kΓknΓk+nzkπΓ2k+1

F:=22kΓn+kΓk+nzkπΓ2k+1

(7)

DefiniteSummationF,k=0..∞

k=0∞22kΓn+kΓk+nzkπΓ2k+1

(8)

It is necessary to specify the domain of convergence:

k=0∞F=DefiniteSummationF,k=0..∞assumingz1

k=0∞22kΓn+kΓk+nzkπΓ2k+1=πcos2narcsinzcscπnn

(9)

Summationk32,k=1..∞

∞

(10)

Summation1k,k=1..∞

k=1∞1k

(11)

Parametric case discussions may be returned:

Fbinomial2k3,k4k

F:=binomial2k3,k4k

(12)

k=0nF=SummationF,k=0..n,parametric

k=0nbinomial2k3,k4k={124nn+1n+2binomial2n1,n+1n1n034n=1124nn+1n+2binomial2n1,n+1n1+382n

(13)

Summation1k,k=a..b

Warning, unable to determine if the summand is singular in the interval of summation; try to use assumptions or use the parametric option

k=ab1k

(14)

Summation1k,k=a..b,parametric

{0a=b+1Ψb+1Ψa1aand0bΨbΨ1aa0andb1FAILotherwise

(15)

If _EnvFormal is set to true, the Summation command returns the class for recognized divergent sums.

_EnvFormaltrue

_EnvFormal:=true

(16)

F22kΓknΓk+nzkπΓ2k+1:

k=0∞F=SummationF,k=0..∞

k=0∞22kΓn+kΓk+nzkπΓ2k+1=πcos2narcsinzcscπnn

(17)

Summationk32,k=1..∞

ζ32

(18)

Summation1k,k=1..∞

12

(19)

See Also

product

RootOf

sum

SumTools

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam