SumTools[Hypergeometric] - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Discrete Mathematics : Summation and Difference Equations : SumTools : SumTools/Hypergeometric/IsZApplicable

SumTools[Hypergeometric]

  

IsZApplicable

  

test the applicability of Zeilberger's algorithm to hypergeometric terms

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

IsZApplicable(F, n, k, En, 'Zpair')

Parameters

F

-

hypergeometric term in n and k

n

-

name

k

-

name

En

-

(optional) name; denote the shift operator with respect to n

'Zpair'

-

(optional) name; assigned computed Z-pair

Description

• 

Let F be a hypergeometric term in n and k. The IsZApplicable(F, n, k, En, 'Zpair') command determines the applicability of Zeilberger's algorithm to F. It returns true if Zeilberger's algorithm is applicable to F. Otherwise, it returns false.

• 

If Zeilberger's algorithm is applicable to the function F and the fourth and the fifth optional arguments are specified, the fifth argument 'Zpair' is assigned the computed Z-pair L,G for F.

• 

If the input F is not a rational function of n and k, IsZApplicable returns FAIL. In this case, if the optional arguments En and 'Zpair' are specified, Zeilberger(F, n, k, En) is called. If it succeeds in finding a Z-pair for F, the computed Z-pair is assigned to 'Zpair'.

Examples

withSumTools[Hypergeometric]:

In the following example, F is not a proper hypergeometric term. However, Zeilberger's algorithm is applicable to F:

F1binomialn,k+1nk+n+1+nk2kn+2binomialn,kn2k+2nk2nk+2k+n1

F:=binomialn,k+1kn+n+1+kn2kn+2binomialn,k2k2n+kn2kn+2k+n1

(1)

IsProperHypergeometricTermF,n,k

false

(2)

IsZApplicableF,n,k

true

(3)

In the following example, F is not a proper hypergeometric term, and Zeilberger's algorithm is not applicable to F either:

F1k1binomialn+1,kbinomial2n2k1,n1nk+1

F:=1kbinomialn+1,kbinomial2n2k1,n1kn+1

(4)

IsProperHypergeometricTermF,n,k

false

(5)

IsZApplicableF,n,k

false

(6)

The input is a hypergeometric term of n and k.

F1n2+3nk2n10k2+11k3

F:=110k2+3kn+n2+11k2n3

(7)

IsZApplicableF,n,k,En,'Zpair'

true

(8)

LZpair1

L:=7n41En6+7n34En5+En6+7n1+7n

(9)

GZpair2

G:=5600k66+7n14407n+45k56+7n+40154n2+2230n+7399k46+7n8014n3+450n2+3619n+8445k36+7n307n440n32079n213900n26696k26+7n+107n5+145n4+679n32545n225082n45780k6+7n75n5+1295n4+7075n3+7337n244310n960486+7n10k123nk1n2+9k7n6+7n5k+n35k+n22kn34+2kn5+2kn6+2kn7+2kn10k2+3kn+n2+11k2n3

(10)

VerifyF,Zpair,n,k,En

true

(11)

References

  

Abramov, S.A. "Applicability of Zeilberger's Algorithm to Hypergeometric Terms." Proceedings ISSAC'2002, pp. 1-7. ACM Press, 2002.

  

Abramov, S.A., and Le, H.Q. "Applicability of Zeilberger's Algorithm to Rational Functions." Proceedings FPSAC'2000, pp. 91-102. Springer-Verlag LNCS, 2000.

See Also

SumTools[Hypergeometric]

SumTools[Hypergeometric][IsProperHypergeometricTerm]

SumTools[Hypergeometric][MinimalZpair]

SumTools[Hypergeometric][Verify]

SumTools[Hypergeometric][Zeilberger]

SumTools[Hypergeometric][ZpairDirect]

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam