construct r-terms conjugate to a bivariate hypergeometric term - Maple Help

Online Help

All Products    Maple    MapleSim

Home : Support : Online Help : Mathematics : Discrete Mathematics : Summation and Difference Equations : SumTools : SumTools/Hypergeometric/ConjugateRTerm

SumTools[Hypergeometric][ConjugateRTerm] - construct r-terms conjugate to a bivariate hypergeometric term

Calling Sequence

ConjugateRTerm[1](T, n, k, 'listform')

ConjugateRTerm[2](T, n, k, 'listform')




hypergeometric term of n and k









(optional) specify output as a list



For a specified bivariate hypergeometric term Tn,k in n and k, the ConjugateRTerm[1](T, n, k) and ConjugateRTerm[2](T, n, k) commands construct two r-terms conjugate to Tn,k.


The output is a bivariate hypergeometric term, called an r-term, conjugate to Tn,k, that is, it can be written as Rn,kTpn,k where Rn,k is a rational function of n and k, and Tpn,k=unvki=1skbi+nai+gi!i=s+1tai+bi+gi!, a_i, b_i are integers, gcdai,bi=1, 0ai, s, t are non-negative integers, and g_i, u, v are complex numbers. Tpn,k is called a factorial term.


A polynomial pn,k is integer-linear if it has the form an+bk+c where a, b are integers, and c is a complex number.


For the first constructed r-term, all the integer-linear polynomials in the numerator and the denominator of the rational function Rn,k are moved into the factorial term Tpn,k.


For the second r-term, the integer-linear polynomials are moved from the factorial term Tpn,k to the rational function Rn,k, that is, for ij such that ai=aj, bi=bj, then gigj is not an integer; and in the case that gigj=0, either i,js or i,s+1j.


If the optional argument 'listform' is specified, the output is a list Rn,k,Tpn,k.


A sequence Tn,k is a bivariate hypergeometric term of n and k if there are nonzero polynomials f0, f_1, g_0, g_1 of n and k such that



for all non-negative integers n, k. Two hypergeometric terms T_1, T_2 are conjugate if they satisfy the above two relations with the same f_0, f_1, g_0, g_1.


Note: The ConjugateRTerm command replaces the CanonicalRepresentation command.












See Also

SumTools[Hypergeometric], SumTools[Hypergeometric][IsHolonomic], SumTools[Hypergeometric][IsProperHypergeometricTerm], SumTools[Hypergeometric][RationalCanonicalForm]



Abramov, S.A., and Petkovsek, M. "Canonical Representations of Hypergeometric Terms." Proceedings FPSAC'2001. pp. 1-10. 2001.


Abramov, S.A., and Petkovsek, M. "Proof of a Conjecture of Wilf and Zeilberger." University of Ljubljana, Preprint series. Vol. 39. (2001): 748.

Download Help Document

Was this information helpful?

Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam