Student[VectorCalculus] - Maple Programming Help

Home : Support : Online Help : Education : Student Package : Vector Calculus : Computation Commands : Student/VectorCalculus/diff

Student[VectorCalculus]

 diff
 compute the derivative of a Vector-valued function

 Calling Sequence diff(f, v)

Parameters

 f - Vector or algebraic expression v - name or name, name, ...; specify the variables of differentiation

Description

 • The diff(f, v) calling sequence is an extension of the top-level diff that performs coordinate-wise differentiation on Vectors (including vector fields), in the coordinate systems of the Student[VectorCalculus] package.  If f is not a Vector, the arguments are passed to the top-level diff command.

Examples

 > $\mathrm{with}\left(\mathrm{Student}[\mathrm{VectorCalculus}]\right):$
 > $\frac{ⅆ}{ⅆt}⟨t,{t}^{2},{t}^{3}⟩$
 ${{e}}_{{x}}{+}{2}{}{t}{{e}}_{{y}}{+}{3}{}{{t}}^{{2}}{{e}}_{{z}}$ (1)
 > $\frac{{\partial }^{2}}{\partial t\partial s}⟨\mathrm{cos}\left(st\right),\mathrm{sin}\left(st\right)⟩$
 $\left({-}{\mathrm{sin}}{}\left({s}{}{t}\right){-}{t}{}{s}{}{\mathrm{cos}}{}\left({s}{}{t}\right)\right){{e}}_{{x}}{+}\left({\mathrm{cos}}{}\left({s}{}{t}\right){-}{t}{}{s}{}{\mathrm{sin}}{}\left({s}{}{t}\right)\right){{e}}_{{y}}$ (2)
 > $\mathrm{SetCoordinates}\left({\mathrm{spherical}}_{r,\mathrm{φ},\mathrm{θ}}\right)$
 ${{\mathrm{spherical}}}_{{r}{,}{\mathrm{φ}}{,}{\mathrm{θ}}}$ (3)
 > $F≔\mathrm{VectorField}\left(⟨ar,0,0⟩\right)$
 ${F}{≔}\left({a}{}{r}\right){\stackrel{{_}}{{e}}}_{{r}}$ (4)
 > $\frac{\partial }{\partial \mathrm{φ}}F$
 $\left({a}{}{r}{}{\mathrm{cos}}{}\left({\mathrm{φ}}\right){}{{\mathrm{cos}}{}\left({\mathrm{θ}}\right)}^{{2}}{}{\mathrm{sin}}{}\left({\mathrm{φ}}\right){+}{a}{}{r}{}{\mathrm{cos}}{}\left({\mathrm{φ}}\right){}{{\mathrm{sin}}{}\left({\mathrm{θ}}\right)}^{{2}}{}{\mathrm{sin}}{}\left({\mathrm{φ}}\right){-}{a}{}{r}{}{\mathrm{sin}}{}\left({\mathrm{φ}}\right){}{\mathrm{cos}}{}\left({\mathrm{φ}}\right)\right){\stackrel{{_}}{{e}}}_{{r}}{+}\left({a}{}{r}{}{{\mathrm{cos}}{}\left({\mathrm{φ}}\right)}^{{2}}{}{{\mathrm{cos}}{}\left({\mathrm{θ}}\right)}^{{2}}{+}{a}{}{r}{}{{\mathrm{cos}}{}\left({\mathrm{φ}}\right)}^{{2}}{}{{\mathrm{sin}}{}\left({\mathrm{θ}}\right)}^{{2}}{+}{a}{}{r}{}{{\mathrm{sin}}{}\left({\mathrm{φ}}\right)}^{{2}}\right){\stackrel{{_}}{{e}}}_{{\mathrm{φ}}}$ (5)
 > $\frac{\partial }{\partial a}F$
 $\left({r}\right){\stackrel{{_}}{{e}}}_{{r}}$ (6)