Student[Statistics] - Maple Help

Home : Support : Online Help : Education : Student Package : Statistics : Random Variable Distributions : Student/Statistics/PoissonRandomVariable

Student[Statistics]

 PoissonRandomVariable
 Poisson random variable

 Calling Sequence PoissonRandomVariable(lambda)

Parameters

 lambda - intensity parameter

Description

 • The Poisson random variable is a discrete probability random variable with probability function given by:

$f\left(t\right)=\left\{\begin{array}{cc}0& t<0\\ \frac{{\mathrm{\lambda }}^{t}{ⅇ}^{-\mathrm{\lambda }}}{t!}& \mathrm{otherwise}\end{array}\right\$

 subject to the following conditions:

$0<\mathrm{\lambda }$

Notes

 • The Quantile and CDF functions applied to a Poisson random variable use a sequence of iterations in order to converge upon the desired output point.  The maximum number of iterations to perform is equal to 100 by default, but this value can be changed by setting the environment variable _EnvStatisticsIterations to the desired number of iterations.

Examples

 > $\mathrm{with}\left(\mathrm{Student}[\mathrm{Statistics}]\right):$
 > $X≔\mathrm{PoissonRandomVariable}\left(\mathrm{λ}\right):$
 > $\mathrm{ProbabilityFunction}\left(X,u\right)$
 ${{}\begin{array}{cc}{0}& {u}{<}{0}\\ \frac{{{\mathrm{λ}}}^{{u}}{}{{ⅇ}}^{{-}{\mathrm{λ}}}}{{u}{!}}& {\mathrm{otherwise}}\end{array}$ (1)
 > $\mathrm{ProbabilityFunction}\left(X,2\right)$
 $\frac{{1}}{{2}}{}{{\mathrm{λ}}}^{{2}}{}{{ⅇ}}^{{-}{\mathrm{λ}}}$ (2)
 > $\mathrm{Mean}\left(X\right)$
 ${\mathrm{λ}}$ (3)
 > $\mathrm{Variance}\left(X\right)$
 ${\mathrm{λ}}$ (4)
 > $Y≔\mathrm{PoissonRandomVariable}\left(3\right):$
 > $\mathrm{ProbabilityFunction}\left(Y,x,\mathrm{output}=\mathrm{plot}\right)$
 > $\mathrm{CumulativeDistributionFunction}\left(Y,x,\mathrm{output}=\mathrm{plot}\right)$

References

 Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
 Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
 Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

 • The Student[Statistics][PoissonRandomVariable] command was introduced in Maple 18.