Student[Statistics] - Maple Programming Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : Education : Student Package : Statistics : Random Variable Distributions : Student/Statistics/FRatioRandomVariable

Student[Statistics]

 FRatioRandomVariable
 f-ratio random variable

 Calling Sequence FRatioRandomVariable(nu, omega)

Parameters

 nu - first degrees of freedom parameter omega - second degrees of freedom parameter

Description

 • The f-ratio random variable is a continuous probability random variable with probability density function given by:

$f\left(t\right)=\left\{\begin{array}{cc}0& t<0\\ \frac{{\left(\frac{\mathrm{\nu }}{\mathrm{\omega }}\right)}^{\frac{\mathrm{\nu }}{2}}{t}^{\frac{\mathrm{\nu }}{2}-1}}{{\left(1+\frac{\mathrm{\nu }t}{\mathrm{\omega }}\right)}^{\frac{\mathrm{\nu }}{2}+\frac{\mathrm{\omega }}{2}}\mathrm{Β}\left(\frac{\mathrm{\nu }}{2},\frac{\mathrm{\omega }}{2}\right)}& \mathrm{otherwise}\end{array}\right\$

 subject to the following conditions:

$0<\mathrm{\nu },0<\mathrm{\omega }$

 • The FRatio variate is related to independent ChiSquare variates with degrees of freedom nu and omega by the formula FRatio(nu,omega) ~ (ChiSquare(nu)*omega)/(ChiSquare(omega)*nu)
 • The FRatio variate is related to independent Laplace variates with location parameter 0 and scale parameter b by the formula FRatio(2,2) ~ abs(Laplace(0,b))/abs(Laplace(0,b))

Examples

 > $\mathrm{with}\left(\mathrm{Student}[\mathrm{Statistics}]\right):$
 > $X≔\mathrm{FRatioRandomVariable}\left(\mathrm{ν},\mathrm{ω}\right):$
 > $\mathrm{PDF}\left(X,u\right)$
 ${{}\begin{array}{cc}{0}& {u}{<}{0}\\ \frac{{\mathrm{Γ}}{}\left(\frac{{1}}{{2}}{}{\mathrm{ν}}{+}\frac{{1}}{{2}}{}{\mathrm{ω}}\right){}{\left(\frac{{\mathrm{ν}}}{{\mathrm{ω}}}\right)}^{\frac{{1}}{{2}}{}{\mathrm{ν}}}{}{{u}}^{\frac{{1}}{{2}}{}{\mathrm{ν}}{-}{1}}}{{\mathrm{Γ}}{}\left(\frac{{1}}{{2}}{}{\mathrm{ν}}\right){}{\mathrm{Γ}}{}\left(\frac{{1}}{{2}}{}{\mathrm{ω}}\right){}{\left({1}{+}\frac{{\mathrm{ν}}{}{u}}{{\mathrm{ω}}}\right)}^{\frac{{1}}{{2}}{}{\mathrm{ν}}{+}\frac{{1}}{{2}}{}{\mathrm{ω}}}}& {\mathrm{otherwise}}\end{array}$ (1)
 > $\mathrm{PDF}\left(X,0.5\right)$
 $\frac{{\mathrm{Γ}}{}\left({0.5000000000}{}{\mathrm{ν}}{+}{0.5000000000}{}{\mathrm{ω}}\right){}{\left(\frac{{\mathrm{ν}}}{{\mathrm{ω}}}\right)}^{{0.5000000000}{}{\mathrm{ν}}}{}{{0.5}}^{{0.5000000000}{}{\mathrm{ν}}{-}{1.}}}{{\mathrm{Γ}}{}\left({0.5000000000}{}{\mathrm{ν}}\right){}{\mathrm{Γ}}{}\left({0.5000000000}{}{\mathrm{ω}}\right){}{\left({1.}{+}\frac{{0.5}{}{\mathrm{ν}}}{{\mathrm{ω}}}\right)}^{{0.5000000000}{}{\mathrm{ν}}{+}{0.5000000000}{}{\mathrm{ω}}}}$ (2)
 > $\mathrm{Mean}\left(X\right)$
 ${{}\begin{array}{cc}{\mathrm{undefined}}& {\mathrm{ω}}{\le }{2}\\ \frac{{\mathrm{ω}}}{{-}{2}{+}{\mathrm{ω}}}& {\mathrm{otherwise}}\end{array}$ (3)
 > $\mathrm{Variance}\left(X\right)$
 ${{}\begin{array}{cc}{\mathrm{undefined}}& {\mathrm{ω}}{\le }{4}\\ \frac{{2}{}{{\mathrm{ω}}}^{{2}}{}\left({\mathrm{ν}}{+}{\mathrm{ω}}{-}{2}\right)}{{\mathrm{ν}}{}{\left({-}{2}{+}{\mathrm{ω}}\right)}^{{2}}{}\left({-}{4}{+}{\mathrm{ω}}\right)}& {\mathrm{otherwise}}\end{array}$ (4)
 > $Y≔\mathrm{FRatioRandomVariable}\left(7,8\right):$
 > $\mathrm{PDF}\left(Y,x,\mathrm{output}=\mathrm{plot}\right)$
 > $\mathrm{CDF}\left(Y,x\right)$
 ${{}\begin{array}{cc}{0}& {x}{\le }{0}\\ \frac{{43904}{}{{x}}^{{7}{/}{2}}{}\left({8}{+}{7}{}{x}\right){}\left({343}{}{{x}}^{{3}}{+}{2548}{}{{x}}^{{2}}{+}{8008}{}{x}{+}{13728}\right){}\sqrt{{7}}{}\sqrt{{2}}}{{\left({16}{+}{14}{}{x}\right)}^{{15}{/}{2}}}& {0}{<}{x}\end{array}$ (5)
 > $\mathrm{CDF}\left(Y,3,\mathrm{output}=\mathrm{plot}\right)$

References

 Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
 Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
 Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

 • The Student[Statistics][FRatioRandomVariable] command was introduced in Maple 18.
 • For more information on Maple 18 changes, see Updates in Maple 18.

 See Also

## Was this information helpful?

 Please add your Comment (Optional) E-mail Address (Optional) What is ? This question helps us to combat spam