find the inflection points of an expression - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Education : Student Package : Calculus 1 : General : Special Points : Student/Calculus1/InflectionPoints

Student[Calculus1][InflectionPoints] - find the inflection points of an expression

Calling Sequence

InflectionPoints(f(x), x, opts)

InflectionPoints(f(x), x = a..b, opts)

InflectionPoints(f(x), a..b, opts)

Parameters

f(x)

-

algebraic expression in variable 'x'

x

-

name; specify the independent variable

a, b

-

algebraic expressions; specify restricted interval for inflection points

opts

-

equation(s) of the form numeric=true or false; specify computation options

Description

• 

The InflectionPoints(f(x), x) command returns all inflection points  of f(x) as a list of values.

• 

The InflectionPoints(f(x), x = a..b) command returns all inflection points of f(x) in the interval [a,b] as a list of values.

• 

If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.

• 

An inflection point is defined as any point at which the sign of the second derivative changes.

• 

If the expression has an infinite number of inflection points, a warning message and sample inflection points are returned.

• 

The opts argument can contain the following equation that sets computation options.

  

 

  

numeric = true or false

  

Whether to use numeric methods (using floating-point computations) to find the inflection points of the expression. If this option is set to true, the points a and b must be finite and are set to 10 and 10 if they are not provided. By default, the value is false.

Examples

withStudent[Calculus1]:

InflectionPoints3x2x

(1)

InflectionPoints3x55x3+3,x

122,0,122

(2)

InflectionPoints3x55x3+3,x=0.5..0.5

0

(3)

InflectionPoints2x3+5x24x,x

56

(4)

InflectionPoints2x3+5x24x,x,numeric

0.8333333333

(5)

InflectionPointsx23x+1x

(6)

See Also

Student, Student[Calculus1], Student[Calculus1][Asymptotes], Student[Calculus1][CriticalPoints], Student[Calculus1][CurveAnalysisTutor], Student[Calculus1][ExtremePoints], Student[Calculus1][FunctionChart], Student[Calculus1][Roots]


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam