Statistics - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Statistics and Data Analysis : Statistics Package : Quantities : Statistics/MeanDeviation

Statistics

  

MeanDeviation

  

compute the average deviation from the mean

 

Calling Sequence

Parameters

Description

Computation

Data Set Options

Random Variable Options

Examples

References

Compatibility

Calling Sequence

MeanDeviation(A, ds_options)

MeanDeviation(X, rv_options)

Parameters

A

-

data set or Matrix data set

X

-

algebraic; random variable or distribution

ds_options

-

(optional) equation(s) of the form option=value where option is one of ignore, or weights; specify options for computing the mean deviation of a data set

rv_options

-

(optional) equation of the form numeric=value; specifies options for computing the mean deviation of a random variable

Description

• 

The MeanDeviation function computes the average absolute deviation from the mean of the specified random variable or data set.

• 

The first parameter can be a data set (e.g., a Vector), a Matrix data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

All computations involving data are performed in floating-point; therefore, all data provided must have type realcons and all returned solutions are floating-point, even if the problem is specified with exact values.

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Data Set Options

  

The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.

• 

ignore=truefalse -- This option controls how missing data is handled by the MeanDeviation command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the MeanDeviation command will return undefined. If ignore=true all missing items in A will be ignored. The default value is false.

• 

weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight 1.

Random Variable Options

  

The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default, the mean deviation is computed symbolically. To compute the mean deviation numerically, specify the numeric or numeric = true option.

Examples

withStatistics:

Compute the average absolute deviation from the mean of the beta distribution with parameters 3 and 5.

MeanDeviation'Β'3,5

885937567108864

(1)

MeanDeviation'Β'3,5,numeric

0.1320149750

(2)

Generate a random sample of size 100000 drawn from the above distribution and compute the sample mean deviation.

ASample'Β'3,5,105:

MeanDeviationA

0.132610494955237

(3)

Compute the standard error of the mean deviation for the normal distribution with parameters 5 and 2.

XRandomVariableNormal5,2:

BSampleX,106:

MeanDeviationX,StandardError[106]MeanDeviation,X

22π,150012π

(4)

MeanDeviationX,numeric,StandardError[106]MeanDeviation,X,numeric

1.595769121,0.001205620551

(5)

MeanDeviationB

1.59524885451810

(6)

Create a beta-distributed random variable Y and compute the mean deviation of Y+22.

YRandomVariable'Β'5,2:

MeanDeviationY+22

2503680131251229312+4316338125268912161

(7)

MeanDeviationY+22,numeric

0.6995551230

(8)

Verify this using simulation.

CSampleY+22,105:

MeanDeviationC

0.698524713115031

(9)

Compute the mean deviation of a weighted data set.

Vseqi,i=57..77,undefined:

W2,4,14,41,83,169,394,669,990,1223,1329,1230,1063,646,392,202,79,32,16,5,2,5:

MeanDeviationV,weights=W

HFloatundefined

(10)

MeanDeviationV,weights=W,ignore=true

2.02365564947327

(11)

Consider the following Matrix data set.

MMatrix3,1130,114694,4,1527,127368,3,907,88464,2,878,96484,4,995,128007

M:=31130114694415271273683907884642878964844995128007

(12)

We compute the mean deviation of each of the columns.

MeanDeviationM

0.640000000000000192.88000000000014823.5200000000

(13)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

Compatibility

• 

The A parameter was updated in Maple 16.

See Also

Statistics

Statistics[Computation]

Statistics[DescriptiveStatistics]

Statistics[Distributions]

Statistics[ExpectedValue]

Statistics[Mean]

Statistics[RandomVariables]

Statistics[StandardError]

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam