formal solutions with d'Alembertian series coefficients for a linear ODE - Maple Help

Online Help

All Products    Maple    MapleSim

Home : Support : Online Help : Mathematics : Differential Equations : Slode : Slode/dAlembertian_formal_sol

Slode[dAlembertian_formal_sol] - formal solutions with d'Alembertian series coefficients for a linear ODE

Calling Sequence

dAlembertian_formal_sol(ode, var, opts)

dAlembertian_formal_sol(LODEstr, opts)




homogeneous linear ODE with polynomial coefficients



dependent variable, for example y(x)



optional arguments of the form keyword=value



LODEstruct data structure



The dAlembertian_formal_sol command returns formal solutions with d'Alembertian series coefficients to the given homogeneous linear ordinary differential equation with polynomial coefficients.


If ode is an expression, then it is equated to zero.


The routine returns an error message if the differential equation ode does not satisfy the following conditions.


ode must be homogeneous and linear in var


ode must have polynomial coefficients in the independent variable of var, for example, x


The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.


A homogeneous linear ordinary differential equation with coefficients that are polynomials in x has a basis of formal solutions (see DEtools[formal_sol]). A formal solution contains a finite number of power series n=0vnTn where T is a parameter and the sequence vn satisfies a linear recurrence (homogeneous or inhomogeneous).


This routine selects such formal solutions that contain only series with d'Alembertian coefficients. A sequence is called d'Alembertian if it is annihilated by a linear recurrence operator that can be written as a composition of first-order operators (see LinearOperators).


The routine determines an integer N0 such that vn can be represented in the form of a d'Alembertian term:

vn=h1nn1=Nn1h2n1n2=Nn11...ns=Nns11hs+1ns ( + )


for all nN, where hin, 1is+1, is a hypergeometric term (see SumTools[Hypergeometric]):

hin=hNk=Nn1Rk ( ++ )


such that Rk=hik+1hik is rational in k for all kN.





Specifies the name T that is used to denote ax1r where a is a constant and r is called the ramification index. If this option is given, then the routine expresses the formal solutions in terms of T and returns a list of lists each of which is of the form [formal solution, relation between T and x]. Otherwise, it returns the formal solutions in terms of x1r.


x=a or 'point'=a


Specifies the expansion point a. The default is a=0. It can be an algebraic number, depending rationally on some parameters, or .




Specifies a base name C to use for free variables C[0], C[1], etc. The default is the global name  _C. Note that the number of free variables may be less than the order of the given equation if the expansion point is singular.




Specifies base names for dummy variables. The default values are the global names _n and _k, respectively. The name n is used as the summation index in the power series. the names n1, n2, etc., are used as summation indices in ( + ). The name k is used as the product index in ( ++ ).




Specifies the form of representation of hypergeometric terms.  The default value is 'inert'.


'inert' - the hypergeometric term ( ++ ) is represented by an inert product, except for k=Nn11, which is simplified to 1.


'rcf1' or 'rcf2' - the hypergeometric term is represented in the first or second minimal representation, respectively (see ConjugateRTerm).


'active' - the hypergeometric term is represented by non-inert products which, if possible, are computed (see product).




Specifies the form of representation of the sums in ( + ). The default is 'inert'.


'inert' - the sums are in the inert form, except for trivial sums of the form k=uv11, which are simplified to vu.


'gosper' - Gosper's algorithm (see Gosper) is used to find a closed form for the sums in ( + ), if possible, starting with the innermost one.















See Also

DEtools[formal_sol], DEtools[translate], LinearOperators, LODEstruct, Slode, Slode[hypergeom_formal_sol], Slode[mhypergeom_formal_sol], SumTools[Hypergeometric]

Download Help Document

Was this information helpful?

Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam