determine m-points for m-sparse power series solutions - Maple Help

Online Help

All Products    Maple    MapleSim

Home : Support : Online Help : Mathematics : Differential Equations : Slode : Slode/candidate_mpoints

Slode[candidate_mpoints] - determine m-points for m-sparse power series solutions

Calling Sequence

candidate_mpoints(ode, var)





homogeneous linear ODE with polynomial coefficients



dependent variable, for example y(x)



LODEstruct data structure



The candidate_mpoints command determines for all positive integers m candidate points for m-sparse power series solutions of the given homogeneous linear ordinary differential equation with polynomial coefficients, called m-points.


If ode is an expression, then it is equated to zero.


The routine returns an error message if the differential equation ode does not satisfy the following conditions.


ode must be homogeneous and linear in var


ode must have polynomial coefficients in the independent variable of var, for example, x


The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.


This command returns a list of lists with three elements:


an integer mi>1, the sparse order;


a LODEstruct representing an mi-sparse differential equation with constant coefficients which is a right factor of the given equation;


a set of candidate mi-points.


The list is sorted by sparse order.


If for some sparse-order m the given equation has a nontrivial m-sparse right factor with constant coefficients, then the equation has m-sparse power series solutions at an arbitrary point, and these solutions are solutions of this right factor. If the set of candidate m-points is not empty, then the equation may or may not have m-sparse power series solutions at such a point, but it does not have m-sparse power series solutions at any point outside this set.









See Also

LODEstruct, Slode, Slode[candidate_points], Slode[msparse_series_sol]

Download Help Document

Was this information helpful?

Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam