multiply an array of samples by a Kaiser windowing function - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Science and Engineering : Signal Processing : Windowing Functions : SignalProcessing/KaiserWindow

SignalProcessing[KaiserWindow] - multiply an array of samples by a Kaiser windowing function

Calling Sequence

KaiserWindow(A, alpha)

Parameters

A

-

Array of real or complex numeric values; the signal

alpha

-

numeric parameter for Kaiser windowing function

Description

• 

The KaiserWindow(A, alpha) command multiplies the Array A by the Kaiser windowing function with parameter alpha and returns the result in a Array having the same length. The length of A must be at least 1.

• 

The Kaiser windowing function w with parameter alpha is defined as follows for a sample with N points.

wk=I0αN2122kN2+122I0αN12

where I0 is a modified Bessel function of the first kind (see BesselI).

• 

For an Array with complex values, the real and imaginary parts are multiplied by the same windowing function.

• 

Before the code performing the computation runs, A is converted to datatype float[8] or complex[8] if it does not have one of those datatypes already. For this reason, it is most efficient if A has one of these datatypes beforehand. This does not apply if inplace is true.

• 

If the container=C option is provided, then the results are put into C and C is returned. With this option, no additional memory is allocated to store the result. The container must be an Array of the same size and datatype as A.

• 

If the inplace or inplace=true option is provided, then A is overwritten with the results. In this case, the container option is ignored.

Thread Safety

• 

The SignalProcessing[KaiserWindow] command is thread-safe as of Maple 17.

• 

For more information on thread safety, see index/threadsafe.

Examples

withSignalProcessing:

a:=GenerateUniform10,1,1

a:=0.7852184921503080.5884139649570000.9931658226996680.9215782885439710.03878017095848920.01360579254105690.2107569728977980.7496002158150090.1389663578011100.212285134010017

(1)

KaiserWindowa,0

0.7852184921503080.5884139649570000.9931658226996680.9215782885439710.03878017095848920.01360579254105690.2107569728977980.7496002158150090.1389663578011100.212285134010017

(2)

KaiserWindowa,0.23

0.6104574446082430.5071484165371900.9218368169461600.8974465329154520.03866662456347070.01356595546308060.2052382493881420.6957640518183870.1197737859874270.165038192212196

(3)

KaiserWindowa,4.2

5.2625101557616010-80.0006657865075925070.04513054970042180.3221602602542560.03460606095756070.01214133085064880.07367526132416510.03406266005341220.0001572395142593411.4227284314021010-8

(4)

c:=Array1..10,'datatype'='float'8,'order'='C_order':

KaiserWindowa,0.03,'container'=c

0.7816530271570970.5867969465377990.9917728452204360.9211128584426180.03877799457589430.01360502897015600.2106505330646600.7485488544056730.1385844648250820.211321204579600

(5)

c

0.7816530271570970.5867969465377990.9917728452204360.9211128584426180.03877799457589430.01360502897015600.2106505330646600.7485488544056730.1385844648250820.211321204579600

(6)

a:=GenerateTone100,1,1π,π:

useplotsindisplayArraylistplota,listplotKaiserWindowa,0.2;animatelistplot,'KaiserWindow'a,α,α=1..1end use

See Also

SignalProcessing[BartlettWindow], SignalProcessing[BlackmanWindow], SignalProcessing[HammingWindow], SignalProcessing[HannWindow]


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam