RegularChains - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Factorization and Solving Equations : RegularChains : RegularChains/IsRegular

RegularChains

  

IsRegular

  

check if a polynomial is regular modulo a regular chain

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

IsRegular(p, rc, R)

Parameters

p

-

polynomial of R

rc

-

regular chain of R

R

-

polynomial ring

Description

• 

The command IsRegular(in_p, in_rc, R) returns true if and only if p is regular modulo rc, that is if and only if p is not a zero-divisor modulo the saturated ideal of rc.

• 

This command is part of the RegularChains package, so it can be used in the form IsRegular(..) only after executing the command with(RegularChains).  However, it can always be accessed through the long form of the command by using RegularChains[IsRegular](..).

Examples

withRegularChains:withChainTools:

RPolynomialRingx,y,z

R:=polynomial_ring

(1)

TEmptyR

T:=regular_chain

(2)

TChainz+1z+2,y2+z,xzxy,T,R

T:=regular_chain

(3)

EquationsT,R

x2+yzx+zy,y2+z,z2+3z+2

(4)

pz+1x3+5

p:=z+1x3+5

(5)

IsRegularp,T,R

false

(6)

regl,zdlopRegularizep,T,R

regl,zdl:=regular_chain,regular_chain,regular_chain,regular_chain

(7)

mapEquations,zdl,R

x1,y1,z+1,x+1,y1,z+1,x+1,y+1,z+1

(8)

The fact that the list zdl is not empty means that there are cases, modulo which, p is zero. This is clear from the definition of p and rc.

qx+y+z

q:=x+y+z

(9)

IsRegularq,T,R

true

(10)

Regularizeq,T,R

regular_chain,

(11)

Inverseq,T,R

235xyz2+94xz3515xyz+112xz2206xz,504,regular_chain,235xyz2+94xz3515xyz+112xz2206xz,504,regular_chain,235xyz2+94xz3+470y2z2+282yz3188z4515xyz+112xz2+1030y2z+806yz2224z3206xz+412yz+412z2,504,regular_chain,235xyz2+94xz3+470y2z2+282yz3188z4515xyz+112xz2+1030y2z+806yz2224z3206xz+412yz+412z2,504,regular_chain,

(12)

Since q is regular with respect to T and since every variable q is algebraic with respect to T, we can compute the inverse of q modulo T.

rzx

r:=x+z

(13)

IsRegularr,T,R

false

(14)

Regularizer,T,R

regular_chain,regular_chain,regular_chain,regular_chain

(15)

For each case where r is regular modulo rc, we can compute its inverse.

Inverser,T,R

1,2,regular_chain,y+z,2,regular_chain,regular_chain,regular_chain

(16)

See Also

Chain

ChainTools

Empty

Equations

Inverse

PolynomialRing

RegularChains

Regularize

RegularizeDim0

RegularizeInitial

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam