inverse of a polynomial with respect to a regular chain - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Factorization and Solving Equations : RegularChains : RegularChains/Inverse

RegularChains[Inverse] - inverse of a polynomial with respect to a regular chain

Calling Sequence

Inverse(p, rc, R)

Inverse(p, rc, R, 'normalized'='yes')

Parameters

R

-

polynomial ring

rc

-

regular chain of R

p

-

polynomial of R

'normalized'='yes'

-

boolean flag (optional)

Description

• 

The function call Inverse(p, rc, R) returns a list inv,zdiv. The list inv  consists of pairs qi,hi,rci such that qip equals hi modulo the saturated ideal of rci, where hi is regular with respect to rci. The list zdiv is a list of regular chains rcj such that p is a zero-divisor modulo rcj. In addition, the set of all regular chains occurring in inv and zdiv is a triangular decomposition of rc. To be precise, they form a decomposition of rc in the sense of Kalkbrener.

• 

If 'normalized'='yes' is passed, then the regular chain rc must be normalized. In addition, all the returned regular chains will be normalized.

• 

If the regular chain rc is normalized but 'normalized'='yes' is not passed, then there is no guarantee that the returned regular chains will be normalized.

• 

For zero-dimensional regular chains in prime characteristic, the commands RegularizeDim0 and NormalizePolynomialDim0 can be combined to obtain the same specification as the command Inverse  while gaining the advantages of  modular techniques and asymptotically fast polynomial arithmetic.

• 

This command is part of the RegularChains package, so it can be used in the form Inverse(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[Inverse](..).

Examples

withRegularChains:withChainTools:

R:=PolynomialRingx,y,z

R:=polynomial_ring

(1)

rc:=Chainz2+1,y2+z,EmptyR,R

rc:=regular_chain

(2)

Inversez,rc,R

z,1,regular_chain,

(3)

Inversey,rc,R

zy,1,regular_chain,

(4)

Inversex,rc,R

1,x,regular_chain,

(5)

p:=yz

p:=yz

(6)

rc:=Chainz2+1,y2+1,EmptyR,R

rc:=regular_chain

(7)

inv,zdiv:=opInversep,rc,R:

inv

z,2,regular_chain

(8)

zdiv

regular_chain

(9)

q1:=inv11;h1:=inv12;rc1:=inv13;Equationsrc1,R

q1:=z

h1:=2

rc1:=regular_chain

y+z,z2+1

(10)

NormalFormq1ph1,rc1,R

0

(11)

rc2:=zdiv1;Equationsrc2,R

rc2:=regular_chain

yz,z2+1

(12)

See Also

Chain, ChainTools, Empty, Equations, IsRegular, IsStronglyNormalized, MatrixInverse, NormalForm, NormalizePolynomialDim0, PolynomialRing, RegularChains, RegularizeDim0


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam